#include <AP_HAL/AP_HAL.h> #if HAL_ENABLE_LIBUAVCAN_DRIVERS #include "AP_BattMonitor.h" #include "AP_BattMonitor_UAVCAN.h" #include <AP_CANManager/AP_CANManager.h> #include <AP_Common/AP_Common.h> #include <AP_Math/AP_Math.h> #include <AP_UAVCAN/AP_UAVCAN.h> #include <uavcan/equipment/power/BatteryInfo.hpp> #define LOG_TAG "BattMon" extern const AP_HAL::HAL& hal; UC_REGISTRY_BINDER(BattInfoCb, uavcan::equipment::power::BatteryInfo); /// Constructor AP_BattMonitor_UAVCAN::AP_BattMonitor_UAVCAN(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, BattMonitor_UAVCAN_Type type, AP_BattMonitor_Params ¶ms) : AP_BattMonitor_Backend(mon, mon_state, params), _type(type) { // starts with not healthy _state.healthy = false; } void AP_BattMonitor_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan) { if (ap_uavcan == nullptr) { return; } auto* node = ap_uavcan->get_node(); uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb> *battinfo_listener; battinfo_listener = new uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb>(*node); // Backend Msg Handler const int battinfo_listener_res = battinfo_listener->start(BattInfoCb(ap_uavcan, &handle_battery_info_trampoline)); if (battinfo_listener_res < 0) { AP_HAL::panic("UAVCAN BatteryInfo subscriber start problem\n\r"); return; } } AP_BattMonitor_UAVCAN* AP_BattMonitor_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t battery_id) { if (ap_uavcan == nullptr) { return nullptr; } for (uint8_t i = 0; i < AP::battery()._num_instances; i++) { if (AP::battery().drivers[i] == nullptr || AP::battery().get_type(i) != AP_BattMonitor::Type::UAVCAN_BatteryInfo) { continue; } AP_BattMonitor_UAVCAN* driver = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i]; if (driver->_ap_uavcan == ap_uavcan && driver->_node_id == node_id && match_battery_id(i, battery_id)) { return driver; } } // find empty uavcan driver for (uint8_t i = 0; i < AP::battery()._num_instances; i++) { if (AP::battery().drivers[i] != nullptr && AP::battery().get_type(i) == AP_BattMonitor::Type::UAVCAN_BatteryInfo && match_battery_id(i, battery_id)) { AP_BattMonitor_UAVCAN* batmon = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i]; if(batmon->_ap_uavcan != nullptr || batmon->_node_id != 0) { continue; } batmon->_ap_uavcan = ap_uavcan; batmon->_node_id = node_id; batmon->init(); AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "Registered BattMonitor Node %d on Bus %d\n", node_id, ap_uavcan->get_driver_index()); return batmon; } } return nullptr; } void AP_BattMonitor_UAVCAN::handle_battery_info(const BattInfoCb &cb) { WITH_SEMAPHORE(_sem_battmon); _interim_state.voltage = cb.msg->voltage; _interim_state.current_amps = cb.msg->current; _soc = cb.msg->state_of_charge_pct; if (!isnanf(cb.msg->temperature) && cb.msg->temperature > 0) { // Temperature reported from battery in kelvin and stored internally in Celsius. _interim_state.temperature = cb.msg->temperature - C_TO_KELVIN; _interim_state.temperature_time = AP_HAL::millis(); } uint32_t tnow = AP_HAL::micros(); uint32_t dt = tnow - _interim_state.last_time_micros; // update total current drawn since startup if (_interim_state.last_time_micros != 0 && dt < 2000000) { // .0002778 is 1/3600 (conversion to hours) float mah = (float) ((double) _interim_state.current_amps * (double) dt * (double) 0.0000002778f); _interim_state.consumed_mah += mah; _interim_state.consumed_wh += 0.001f * mah * _interim_state.voltage; } // record time _interim_state.last_time_micros = tnow; _interim_state.healthy = true; } void AP_BattMonitor_UAVCAN::handle_battery_info_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoCb &cb) { AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id); if (driver == nullptr) { return; } driver->handle_battery_info(cb); } // read - read the voltage and current void AP_BattMonitor_UAVCAN::read() { uint32_t tnow = AP_HAL::micros(); // timeout after 5 seconds if ((tnow - _interim_state.last_time_micros) > AP_BATTMONITOR_UAVCAN_TIMEOUT_MICROS) { _interim_state.healthy = false; } // Copy over relevant states over to main state WITH_SEMAPHORE(_sem_battmon); _state.temperature = _interim_state.temperature; _state.temperature_time = _interim_state.temperature_time; _state.voltage = _interim_state.voltage; _state.current_amps = _interim_state.current_amps; _state.consumed_mah = _interim_state.consumed_mah; _state.consumed_wh = _interim_state.consumed_wh; _state.last_time_micros = _interim_state.last_time_micros; _state.healthy = _interim_state.healthy; _has_temperature = (AP_HAL::millis() - _state.temperature_time) <= AP_BATT_MONITOR_TIMEOUT; } /// capacity_remaining_pct - returns the % battery capacity remaining (0 ~ 100) uint8_t AP_BattMonitor_UAVCAN::capacity_remaining_pct() const { if ((uint32_t(_params._options.get()) & uint32_t(AP_BattMonitor_Params::Options::Ignore_UAVCAN_SoC)) || _soc > 100) { // a UAVCAN battery monitor may not be able to supply a state of charge. If it can't then // the user can set the option to use current integration in the backend instead. return AP_BattMonitor_Backend::capacity_remaining_pct(); } return _soc; } #endif