// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // // Simple test for the AP_AHRS interface // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // uncomment this for a APM2 board #define APM2_HARDWARE #define WITH_GPS 0 FastSerialPort0(Serial); FastSerialPort1(Serial1); Arduino_Mega_ISR_Registry isr_registry; AP_TimerProcess scheduler; #ifdef DESKTOP_BUILD AP_Compass_HIL compass; #else AP_Compass_HMC5843 compass; #endif #ifdef APM2_HARDWARE AP_InertialSensor_MPU6000 ins( 53 ); # else AP_ADC_ADS7844 adc; AP_InertialSensor_Oilpan ins( &adc ); #endif static GPS *g_gps; AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); AP_IMU_INS imu(&ins); // choose which AHRS system to use AP_AHRS_DCM ahrs(&imu, g_gps); //AP_AHRS_Quaternion ahrs(&imu, g_gps); //AP_AHRS_MPU6000 ahrs(&imu, g_gps, &ins); // only works with APM2 AP_Baro_BMP085_HIL barometer; #ifdef APM2_HARDWARE # define A_LED_PIN 27 # define C_LED_PIN 25 # define LED_ON LOW # define LED_OFF HIGH # define MAG_ORIENTATION AP_COMPASS_APM2_SHIELD #else # define A_LED_PIN 37 # define C_LED_PIN 35 # define LED_ON HIGH # define LED_OFF LOW # define MAG_ORIENTATION AP_COMPASS_COMPONENTS_DOWN_PINS_FORWARD #endif static void flash_leds(bool on) { digitalWrite(A_LED_PIN, on ? LED_OFF : LED_ON); digitalWrite(C_LED_PIN, on ? LED_ON : LED_OFF); } void setup(void) { Serial.begin(115200); Serial.println("Starting up..."); #ifndef DESKTOP_BUILD I2c.begin(); I2c.timeOut(5); I2c.setSpeed(true); #endif SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV16); #ifdef APM2_HARDWARE // we need to stop the barometer from holding the SPI bus pinMode(40, OUTPUT); digitalWrite(40, HIGH); #endif isr_registry.init(); scheduler.init(&isr_registry); imu.init(IMU::COLD_START, delay, flash_leds, &scheduler); imu.init_accel(delay, flash_leds); compass.set_orientation(MAG_ORIENTATION); ahrs.init(); if( compass.init() ) { Serial.printf("Enabling compass\n"); ahrs.set_compass(&compass); } else { Serial.printf("No compass detected\n"); } g_gps = &g_gps_driver; #if WITH_GPS g_gps->init(); #endif } void loop(void) { static uint16_t counter; static uint32_t last_t, last_print, last_compass; uint32_t now = micros(); float heading = 0; if (last_t == 0) { last_t = now; return; } last_t = now; if (now - last_compass > 100*1000UL && compass.read()) { heading = compass.calculate_heading(ahrs.get_dcm_matrix()); // read compass at 10Hz last_compass = now; #if WITH_GPS g_gps->update(); #endif } ahrs.update(); counter++; if (now - last_print >= 0.5e6) { Vector3f drift = ahrs.get_gyro_drift(); Serial.printf_P(PSTR("r:%4.1f p:%4.1f y:%4.1f drift=(%5.1f %5.1f %5.1f) hdg=%.1f rate=%.1f\n"), ToDeg(ahrs.roll), ToDeg(ahrs.pitch), ToDeg(ahrs.yaw), ToDeg(drift.x), ToDeg(drift.y), ToDeg(drift.z), compass.use_for_yaw() ? ToDeg(heading) : 0.0, (1.0e6*counter)/(now-last_print)); last_print = now; counter = 0; } }