/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "AP_Baro.h" #include extern const AP_HAL::HAL& hal; AP_Baro_HIL::AP_Baro_HIL(AP_Baro &baro) : AP_Baro_Backend(baro) { _instance = _frontend.register_sensor(); } // ========================================================================== // based on tables.cpp from http://www.pdas.com/atmosdownload.html /* Compute the temperature, density, and pressure in the standard atmosphere Correct to 20 km. Only approximate thereafter. */ void AP_Baro::SimpleAtmosphere( const float alt, // geometric altitude, km. float& sigma, // density/sea-level standard density float& delta, // pressure/sea-level standard pressure float& theta) // temperature/sea-level standard temperature { const float REARTH = 6369.0f; // radius of the Earth (km) const float GMR = 34.163195f; // gas constant float h=alt*REARTH/(alt+REARTH); // geometric to geopotential altitude if (h < 11.0f) { // Troposphere theta=(288.15f-6.5f*h)/288.15f; delta=powf(theta, GMR/6.5f); } else { // Stratosphere theta=216.65f/288.15f; delta=0.2233611f*expf(-GMR*(h-11.0f)/216.65f); } sigma = delta/theta; } /* convert an altitude in meters above sea level to a presssure and temperature */ void AP_Baro::setHIL(float altitude_msl) { float sigma, delta, theta; const float p0 = 101325; SimpleAtmosphere(altitude_msl*0.001f, sigma, delta, theta); float p = p0 * delta; float T = 303.16f * theta - 273.16f; // Assume 30 degrees at sea level - converted to degrees Kelvin setHIL(0, p, T); } /* set HIL pressure and temperature for an instance */ void AP_Baro::setHIL(uint8_t instance, float pressure, float temperature) { if (instance >= _num_sensors) { // invalid return; } sensors[instance].pressure = pressure; sensors[instance].temperature = temperature; sensors[instance].last_update_ms = hal.scheduler->millis(); }