/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_GPS.h" #include #include #include #include #include #include #include "AP_GPS_NOVA.h" #include "AP_GPS_ERB.h" #include "AP_GPS_GSOF.h" #include "AP_GPS_MTK.h" #include "AP_GPS_MTK19.h" #include "AP_GPS_NMEA.h" #include "AP_GPS_PX4.h" #include "AP_GPS_QURT.h" #include "AP_GPS_SBF.h" #include "AP_GPS_SBP.h" #include "AP_GPS_SIRF.h" #include "AP_GPS_UBLOX.h" #include "AP_GPS_MAV.h" #include "GPS_Backend.h" #if HAL_WITH_UAVCAN #include #include "AP_GPS_UAVCAN.h" #endif #define GPS_BAUD_TIME_MS 1200 // defines used to specify the mask position for use of different accuracy metrics in the blending algorithm #define BLEND_MASK_USE_HPOS_ACC 1 #define BLEND_MASK_USE_VPOS_ACC 2 #define BLEND_MASK_USE_SPD_ACC 4 #define BLEND_COUNTER_FAILURE_INCREMENT 10 extern const AP_HAL::HAL &hal; // baudrates to try to detect GPSes with const uint32_t AP_GPS::_baudrates[] = {4800U, 19200U, 38400U, 115200U, 57600U, 9600U, 230400U}; // initialisation blobs to send to the GPS to try to get it into the // right mode const char AP_GPS::_initialisation_blob[] = UBLOX_SET_BINARY MTK_SET_BINARY SIRF_SET_BINARY; // table of user settable parameters const AP_Param::GroupInfo AP_GPS::var_info[] = { // @Param: TYPE // @DisplayName: GPS type // @Description: GPS type // @Values: 0:None,1:AUTO,2:uBlox,3:MTK,4:MTK19,5:NMEA,6:SiRF,7:HIL,8:SwiftNav,9:UAVCAN,10:SBF,11:GSOF,12:QURT,13:ERB,14:MAV,15:NOVA // @RebootRequired: True // @User: Advanced AP_GROUPINFO("TYPE", 0, AP_GPS, _type[0], 1), // @Param: TYPE2 // @DisplayName: 2nd GPS type // @Description: GPS type of 2nd GPS // @Values: 0:None,1:AUTO,2:uBlox,3:MTK,4:MTK19,5:NMEA,6:SiRF,7:HIL,8:SwiftNav,9:UAVCAN,10:SBF,11:GSOF,12:QURT,13:ERB,14:MAV,15:NOVA // @RebootRequired: True // @User: Advanced AP_GROUPINFO("TYPE2", 1, AP_GPS, _type[1], 0), // @Param: NAVFILTER // @DisplayName: Navigation filter setting // @Description: Navigation filter engine setting // @Values: 0:Portable,2:Stationary,3:Pedestrian,4:Automotive,5:Sea,6:Airborne1G,7:Airborne2G,8:Airborne4G // @User: Advanced AP_GROUPINFO("NAVFILTER", 2, AP_GPS, _navfilter, GPS_ENGINE_AIRBORNE_4G), // @Param: AUTO_SWITCH // @DisplayName: Automatic Switchover Setting // @Description: Automatic switchover to GPS reporting best lock // @Values: 0:Disabled,1:UseBest,2:Blend // @User: Advanced AP_GROUPINFO("AUTO_SWITCH", 3, AP_GPS, _auto_switch, 1), // @Param: MIN_DGPS // @DisplayName: Minimum Lock Type Accepted for DGPS // @Description: Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode. // @Values: 0:Any,50:FloatRTK,100:IntegerRTK // @User: Advanced // @RebootRequired: True AP_GROUPINFO("MIN_DGPS", 4, AP_GPS, _min_dgps, 100), // @Param: SBAS_MODE // @DisplayName: SBAS Mode // @Description: This sets the SBAS (satellite based augmentation system) mode if available on this GPS. If set to 2 then the SBAS mode is not changed in the GPS. Otherwise the GPS will be reconfigured to enable/disable SBAS. Disabling SBAS may be worthwhile in some parts of the world where an SBAS signal is available but the baseline is too long to be useful. // @Values: 0:Disabled,1:Enabled,2:NoChange // @User: Advanced AP_GROUPINFO("SBAS_MODE", 5, AP_GPS, _sbas_mode, 2), // @Param: MIN_ELEV // @DisplayName: Minimum elevation // @Description: This sets the minimum elevation of satellites above the horizon for them to be used for navigation. Setting this to -100 leaves the minimum elevation set to the GPS modules default. // @Range: -100 90 // @Units: Degrees // @User: Advanced AP_GROUPINFO("MIN_ELEV", 6, AP_GPS, _min_elevation, -100), // @Param: INJECT_TO // @DisplayName: Destination for GPS_INJECT_DATA MAVLink packets // @Description: The GGS can send raw serial packets to inject data to multiple GPSes. // @Values: 0:send to first GPS,1:send to 2nd GPS,127:send to all // @User: Advanced AP_GROUPINFO("INJECT_TO", 7, AP_GPS, _inject_to, GPS_RTK_INJECT_TO_ALL), // @Param: SBP_LOGMASK // @DisplayName: Swift Binary Protocol Logging Mask // @Description: Masked with the SBP msg_type field to determine whether SBR1/SBR2 data is logged // @Values: 0:None (0x0000),-1:All (0xFFFF),-256:External only (0xFF00) // @User: Advanced AP_GROUPINFO("SBP_LOGMASK", 8, AP_GPS, _sbp_logmask, 0xFF00), // @Param: RAW_DATA // @DisplayName: Raw data logging // @Description: Enable logging of RXM raw data from uBlox which includes carrier phase and pseudo range information. This allows for post processing of dataflash logs for more precise positioning. Note that this requires a raw capable uBlox such as the 6P or 6T. // @Values: 0:Disabled,1:log every sample,5:log every 5 samples // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_DATA", 9, AP_GPS, _raw_data, 0), // @Param: GNSS_MODE // @DisplayName: GNSS system configuration // @Description: Bitmask for what GNSS system to use on the first GPS (all unchecked or zero to leave GPS as configured) // @Values: 0:Leave as currently configured, 1:GPS-NoSBAS, 3:GPS+SBAS, 4:Galileo-NoSBAS, 6:Galileo+SBAS, 8:Beidou, 51:GPS+IMES+QZSS+SBAS (Japan Only), 64:GLONASS, 66:GLONASS+SBAS, 67:GPS+GLONASS+SBAS // @Bitmask: 0:GPS,1:SBAS,2:Galileo,3:Beidou,4:IMES,5:QZSS,6:GLOSNASS // @User: Advanced AP_GROUPINFO("GNSS_MODE", 10, AP_GPS, _gnss_mode[0], 0), // @Param: SAVE_CFG // @DisplayName: Save GPS configuration // @Description: Determines whether the configuration for this GPS should be written to non-volatile memory on the GPS. Currently working for UBlox 6 series and above. // @Values: 0:Do not save config,1:Save config,2:Save only when needed // @User: Advanced AP_GROUPINFO("SAVE_CFG", 11, AP_GPS, _save_config, 0), // @Param: GNSS_MODE2 // @DisplayName: GNSS system configuration // @Description: Bitmask for what GNSS system to use on the second GPS (all unchecked or zero to leave GPS as configured) // @Values: 0:Leave as currently configured, 1:GPS-NoSBAS, 3:GPS+SBAS, 4:Galileo-NoSBAS, 6:Galileo+SBAS, 8:Beidou, 51:GPS+IMES+QZSS+SBAS (Japan Only), 64:GLONASS, 66:GLONASS+SBAS, 67:GPS+GLONASS+SBAS // @Bitmask: 0:GPS,1:SBAS,2:Galileo,3:Beidou,4:IMES,5:QZSS,6:GLOSNASS // @User: Advanced AP_GROUPINFO("GNSS_MODE2", 12, AP_GPS, _gnss_mode[1], 0), // @Param: AUTO_CONFIG // @DisplayName: Automatic GPS configuration // @Description: Controls if the autopilot should automatically configure the GPS based on the parameters and default settings // @Values: 0:Disables automatic configuration,1:Enable automatic configuration // @User: Advanced AP_GROUPINFO("AUTO_CONFIG", 13, AP_GPS, _auto_config, 1), // @Param: RATE_MS // @DisplayName: GPS update rate in milliseconds // @Description: Controls how often the GPS should provide a position update. Lowering below 5Hz is not allowed // @Units: milliseconds // @Values: 100:10Hz,125:8Hz,200:5Hz // @Range: 50 200 // @User: Advanced AP_GROUPINFO("RATE_MS", 14, AP_GPS, _rate_ms[0], 200), // @Param: RATE_MS2 // @DisplayName: GPS 2 update rate in milliseconds // @Description: Controls how often the GPS should provide a position update. Lowering below 5Hz is not allowed // @Units: milliseconds // @Values: 100:10Hz,125:8Hz,200:5Hz // @Range: 50 200 // @User: Advanced AP_GROUPINFO("RATE_MS2", 15, AP_GPS, _rate_ms[1], 200), // @Param: POS1_X // @DisplayName: Antenna X position offset // @Description: X position of the first GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer. // @Units: m // @User: Advanced // @Param: POS1_Y // @DisplayName: Antenna Y position offset // @Description: Y position of the first GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer. // @Units: m // @User: Advanced // @Param: POS1_Z // @DisplayName: Antenna Z position offset // @Description: Z position of the first GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer. // @Units: m // @User: Advanced AP_GROUPINFO("POS1", 16, AP_GPS, _antenna_offset[0], 0.0f), // @Param: POS2_X // @DisplayName: Antenna X position offset // @Description: X position of the second GPS antenna in body frame. Positive X is forward of the origin. Use antenna phase centroid location if provided by the manufacturer. // @Units: m // @User: Advanced // @Param: POS2_Y // @DisplayName: Antenna Y position offset // @Description: Y position of the second GPS antenna in body frame. Positive Y is to the right of the origin. Use antenna phase centroid location if provided by the manufacturer. // @Units: m // @User: Advanced // @Param: POS2_Z // @DisplayName: Antenna Z position offset // @Description: Z position of the second GPS antenna in body frame. Positive Z is down from the origin. Use antenna phase centroid location if provided by the manufacturer. // @Units: m // @User: Advanced AP_GROUPINFO("POS2", 17, AP_GPS, _antenna_offset[1], 0.0f), // @Param: DELAY_MS // @DisplayName: GPS delay in milliseconds // @Description: Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type. // @Units: milliseconds // @Range: 0 250 // @User: Advanced AP_GROUPINFO("DELAY_MS", 18, AP_GPS, _delay_ms[0], 0), // @Param: DELAY_MS2 // @DisplayName: GPS 2 delay in milliseconds // @Description: Controls the amount of GPS measurement delay that the autopilot compensates for. Set to zero to use the default delay for the detected GPS type. // @Units: milliseconds // @Range: 0 250 // @User: Advanced AP_GROUPINFO("DELAY_MS2", 19, AP_GPS, _delay_ms[1], 0), // @Param: BLEND_MASK // @DisplayName: Multi GPS Blending Mask // @Description: Determines which of the accuracy measures Horizontal position, Vertical Position and Speed are used to calculate the weighting on each GPS receiver when soft switching has been selected by setting GPS_AUTO_SWITCH to 2 // @Bitmask: 0:Horiz Pos,1:Vert Pos,2:Speed // @User: Advanced AP_GROUPINFO("BLEND_MASK", 20, AP_GPS, _blend_mask, 5), // @Param: BLEND_TC // @DisplayName: Blending time constant // @Description: Controls the slowest time constant applied to the calculation of GPS position and height offsets used to adjust different GPS receivers for steady state position differences. // @Units: seconds // @Range: 5.0 30.0 // @User: Advanced AP_GROUPINFO("BLEND_TC", 21, AP_GPS, _blend_tc, 10.0f), AP_GROUPEND }; // constructor AP_GPS::AP_GPS() { AP_Param::setup_object_defaults(this, var_info); } /// Startup initialisation. void AP_GPS::init(DataFlash_Class *dataflash, const AP_SerialManager& serial_manager) { _DataFlash = dataflash; primary_instance = 0; // search for serial ports with gps protocol _port[0] = serial_manager.find_serial(AP_SerialManager::SerialProtocol_GPS, 0); _port[1] = serial_manager.find_serial(AP_SerialManager::SerialProtocol_GPS, 1); _last_instance_swap_ms = 0; // Initialise class variables used to do GPS blending _omega_lpf = 1.0f / constrain_float(_blend_tc, 5.0f, 30.0f); // sanity check update rate for (uint8_t i=0; i GPS_MAX_RATE_MS) { _rate_ms[i] = GPS_MAX_RATE_MS; } } } // return number of active GPS sensors. Note that if the first GPS // is not present but the 2nd is then we return 2. Note that a blended // GPS solution is treated as an additional sensor. uint8_t AP_GPS::num_sensors(void) const { if (!_output_is_blended) { return num_instances; } else { return num_instances+1; } } bool AP_GPS::speed_accuracy(uint8_t instance, float &sacc) const { if (state[instance].have_speed_accuracy) { sacc = state[instance].speed_accuracy; return true; } return false; } bool AP_GPS::horizontal_accuracy(uint8_t instance, float &hacc) const { if (state[instance].have_horizontal_accuracy) { hacc = state[instance].horizontal_accuracy; return true; } return false; } bool AP_GPS::vertical_accuracy(uint8_t instance, float &vacc) const { if (state[instance].have_vertical_accuracy) { vacc = state[instance].vertical_accuracy; return true; } return false; } /** convert GPS week and milliseconds to unix epoch in milliseconds */ uint64_t AP_GPS::time_epoch_convert(uint16_t gps_week, uint32_t gps_ms) { uint64_t fix_time_ms = UNIX_OFFSET_MSEC + gps_week * MSEC_PER_WEEK + gps_ms; return fix_time_ms; } /** calculate current time since the unix epoch in microseconds */ uint64_t AP_GPS::time_epoch_usec(uint8_t instance) { const GPS_State &istate = state[instance]; if (istate.last_gps_time_ms == 0) { return 0; } uint64_t fix_time_ms = time_epoch_convert(istate.time_week, istate.time_week_ms); // add in the milliseconds since the last fix return (fix_time_ms + (AP_HAL::millis() - istate.last_gps_time_ms)) * 1000ULL; } /* send some more initialisation string bytes if there is room in the UART transmit buffer */ void AP_GPS::send_blob_start(uint8_t instance, const char *_blob, uint16_t size) { initblob_state[instance].blob = _blob; initblob_state[instance].remaining = size; } /* send some more initialisation string bytes if there is room in the UART transmit buffer */ void AP_GPS::send_blob_update(uint8_t instance) { // exit immediately if no uart for this instance if (_port[instance] == nullptr) { return; } // see if we can write some more of the initialisation blob if (initblob_state[instance].remaining > 0) { int16_t space = _port[instance]->txspace(); if (space > (int16_t)initblob_state[instance].remaining) { space = initblob_state[instance].remaining; } while (space > 0) { _port[instance]->write(*initblob_state[instance].blob); initblob_state[instance].blob++; space--; initblob_state[instance].remaining--; } } } /* run detection step for one GPS instance. If this finds a GPS then it will fill in drivers[instance] and change state[instance].status from NO_GPS to NO_FIX. */ void AP_GPS::detect_instance(uint8_t instance) { AP_GPS_Backend *new_gps = nullptr; struct detect_state *dstate = &detect_state[instance]; uint32_t now = AP_HAL::millis(); switch (_type[instance]) { #if CONFIG_HAL_BOARD == HAL_BOARD_QURT case GPS_TYPE_QURT: _broadcast_gps_type("QURTGPS", instance, -1); // baud rate isn't valid new_gps = new AP_GPS_QURT(*this, state[instance], _port[instance]); goto found_gps; break; #endif // user has to explicitly set the MAV type, do not use AUTO // do not try to detect the MAV type, assume it's there case GPS_TYPE_MAV: _broadcast_gps_type("MAV", instance, -1); new_gps = new AP_GPS_MAV(*this, state[instance], nullptr); goto found_gps; break; #if HAL_WITH_UAVCAN // user has to explicitly set the UAVCAN type, do not use AUTO // do not try to detect the UAVCAN type, assume it's there case GPS_TYPE_UAVCAN: if (AP_BoardConfig::get_can_enable() >= 1) { _broadcast_gps_type("UAVCAN", instance, -1); new_gps = new AP_GPS_UAVCAN(*this, state[instance], nullptr); // register new listener at first empty node if (hal.can_mgr != nullptr) { AP_UAVCAN *ap_uavcan = hal.can_mgr->get_UAVCAN(); if (ap_uavcan != nullptr) { ap_uavcan->register_gps_listener(new_gps, 0); if (AP_BoardConfig::get_can_debug() >= 2) { hal.console->printf("AP_GPS_UAVCAN registered\n\r"); } goto found_gps; } } } return; #endif default: break; } if (_port[instance] == nullptr) { // UART not available return; } state[instance].instance = instance; state[instance].status = NO_GPS; state[instance].hdop = 9999; switch (_type[instance]) { // by default the sbf/trimble gps outputs no data on its port, until configured. case GPS_TYPE_SBF: _broadcast_gps_type("SBF", instance, -1); // baud rate isn't valid new_gps = new AP_GPS_SBF(*this, state[instance], _port[instance]); break; case GPS_TYPE_GSOF: _broadcast_gps_type("GSOF", instance, -1); // baud rate isn't valid new_gps = new AP_GPS_GSOF(*this, state[instance], _port[instance]); break; case GPS_TYPE_NOVA: _broadcast_gps_type("NOVA", instance, -1); // baud rate isn't valid new_gps = new AP_GPS_NOVA(*this, state[instance], _port[instance]); break; default: break; } // record the time when we started detection. This is used to try // to avoid initialising a uBlox as a NMEA GPS if (dstate->detect_started_ms == 0) { dstate->detect_started_ms = now; } if (now - dstate->last_baud_change_ms > GPS_BAUD_TIME_MS) { // try the next baud rate // incrementing like this will skip the first element in array of bauds // this is okay, and relied upon dstate->current_baud++; if (dstate->current_baud == ARRAY_SIZE(_baudrates)) { dstate->current_baud = 0; } uint32_t baudrate = _baudrates[dstate->current_baud]; _port[instance]->begin(baudrate); _port[instance]->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); dstate->last_baud_change_ms = now; if (_auto_config == 1) { send_blob_start(instance, _initialisation_blob, sizeof(_initialisation_blob)); } } if (_auto_config == 1) { send_blob_update(instance); } while (initblob_state[instance].remaining == 0 && _port[instance]->available() > 0 && new_gps == nullptr) { uint8_t data = _port[instance]->read(); /* running a uBlox at less than 38400 will lead to packet corruption, as we can't receive the packets in the 200ms window for 5Hz fixes. The NMEA startup message should force the uBlox into 115200 no matter what rate it is configured for. */ if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_UBLOX) && ((!_auto_config && _baudrates[dstate->current_baud] >= 38400) || _baudrates[dstate->current_baud] == 115200) && AP_GPS_UBLOX::_detect(dstate->ublox_detect_state, data)) { _broadcast_gps_type("u-blox", instance, dstate->current_baud); new_gps = new AP_GPS_UBLOX(*this, state[instance], _port[instance]); } #if !HAL_MINIMIZE_FEATURES // we drop the MTK drivers when building a small build as they are so rarely used // and are surprisingly large else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_MTK19) && AP_GPS_MTK19::_detect(dstate->mtk19_detect_state, data)) { _broadcast_gps_type("MTK19", instance, dstate->current_baud); new_gps = new AP_GPS_MTK19(*this, state[instance], _port[instance]); } else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_MTK) && AP_GPS_MTK::_detect(dstate->mtk_detect_state, data)) { _broadcast_gps_type("MTK", instance, dstate->current_baud); new_gps = new AP_GPS_MTK(*this, state[instance], _port[instance]); } #endif else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_SBP) && AP_GPS_SBP::_detect(dstate->sbp_detect_state, data)) { _broadcast_gps_type("SBP", instance, dstate->current_baud); new_gps = new AP_GPS_SBP(*this, state[instance], _port[instance]); } #if !HAL_MINIMIZE_FEATURES else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_SIRF) && AP_GPS_SIRF::_detect(dstate->sirf_detect_state, data)) { _broadcast_gps_type("SIRF", instance, dstate->current_baud); new_gps = new AP_GPS_SIRF(*this, state[instance], _port[instance]); } #endif else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_ERB) && AP_GPS_ERB::_detect(dstate->erb_detect_state, data)) { _broadcast_gps_type("ERB", instance, dstate->current_baud); new_gps = new AP_GPS_ERB(*this, state[instance], _port[instance]); } else if (now - dstate->detect_started_ms > (ARRAY_SIZE(_baudrates) * GPS_BAUD_TIME_MS)) { // prevent false detection of NMEA mode in // a MTK or UBLOX which has booted in NMEA mode if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_NMEA) && AP_GPS_NMEA::_detect(dstate->nmea_detect_state, data)) { _broadcast_gps_type("NMEA", instance, dstate->current_baud); new_gps = new AP_GPS_NMEA(*this, state[instance], _port[instance]); } } } found_gps: if (new_gps != nullptr) { state[instance].status = NO_FIX; drivers[instance] = new_gps; timing[instance].last_message_time_ms = now; } } AP_GPS::GPS_Status AP_GPS::highest_supported_status(uint8_t instance) const { if (instance < GPS_MAX_RECEIVERS && drivers[instance] != nullptr) { return drivers[instance]->highest_supported_status(); } return AP_GPS::GPS_OK_FIX_3D; } /* update one GPS instance. This should be called at 10Hz or greater */ void AP_GPS::update_instance(uint8_t instance) { if (_type[instance] == GPS_TYPE_HIL) { // in HIL, leave info alone return; } if (_type[instance] == GPS_TYPE_NONE) { // not enabled state[instance].status = NO_GPS; state[instance].hdop = 9999; return; } if (locked_ports & (1U<read(); uint32_t tnow = AP_HAL::millis(); // if we did not get a message, and the idle timer of 2 seconds // has expired, re-initialise the GPS. This will cause GPS // detection to run again if (!result) { if (tnow - timing[instance].last_message_time_ms > 4000) { // free the driver before we run the next detection, so we // don't end up with two allocated at any time delete drivers[instance]; drivers[instance] = nullptr; memset(&state[instance], 0, sizeof(state[instance])); state[instance].instance = instance; state[instance].status = NO_GPS; state[instance].hdop = 9999; timing[instance].last_message_time_ms = tnow; } } else { timing[instance].last_message_time_ms = tnow; if (state[instance].status >= GPS_OK_FIX_2D) { timing[instance].last_fix_time_ms = tnow; } } } /* update all GPS instances */ void AP_GPS::update(void) { for (uint8_t i=0; i 0) { _blend_health_counter--; } // stop blending if unhealthy if (_blend_health_counter >= 50) { _output_is_blended = false; } } else { _output_is_blended = false; _blend_health_counter = 0; } if (_output_is_blended) { // Use the weighting to calculate blended GPS states calc_blended_state(); // set primary to the virtual instance primary_instance = GPS_BLENDED_INSTANCE; } else { // use switch logic to find best GPS uint32_t now = AP_HAL::millis(); if (_auto_switch >= 1) { // handling switching away from blended GPS if (primary_instance == GPS_BLENDED_INSTANCE) { primary_instance = 0; for (uint8_t i=1; i state[primary_instance].status) || ((state[i].status == state[primary_instance].status) && (state[i].num_sats > state[primary_instance].num_sats))) { primary_instance = i; _last_instance_swap_ms = now; } } } else { // handle switch between real GPSs for (uint8_t i=0; i state[primary_instance].status) { // we have a higher status lock, or primary is set to the blended GPS, change GPS primary_instance = i; _last_instance_swap_ms = now; continue; } bool another_gps_has_1_or_more_sats = (state[i].num_sats >= state[primary_instance].num_sats + 1); if (state[i].status == state[primary_instance].status && another_gps_has_1_or_more_sats) { bool another_gps_has_2_or_more_sats = (state[i].num_sats >= state[primary_instance].num_sats + 2); if ((another_gps_has_1_or_more_sats && (now - _last_instance_swap_ms) >= 20000) || (another_gps_has_2_or_more_sats && (now - _last_instance_swap_ms) >= 5000)) { // this GPS has more satellites than the // current primary, switch primary. Once we switch we will // then tend to stick to the new GPS as primary. We don't // want to switch too often as it will look like a // position shift to the controllers. primary_instance = i; _last_instance_swap_ms = now; } } } } } else { // AUTO_SWITCH is 0 so no switching of GPSs primary_instance = 0; } // copy the primary instance to the blended instance in case it is enabled later state[GPS_BLENDED_INSTANCE] = state[primary_instance]; _blended_antenna_offset = _antenna_offset[primary_instance]; } // update notify with gps status. We always base this on the primary_instance AP_Notify::flags.gps_status = state[primary_instance].status; AP_Notify::flags.gps_num_sats = state[primary_instance].num_sats; } /* pass along a mavlink message (for MAV type) */ void AP_GPS::handle_msg(const mavlink_message_t *msg) { if (msg->msgid == MAVLINK_MSG_ID_GPS_RTCM_DATA) { // pass data to de-fragmenter handle_gps_rtcm_data(msg); return; } uint8_t i; for (i=0; ihandle_msg(msg); } } } /* set HIL (hardware in the loop) status for a GPS instance */ void AP_GPS::setHIL(uint8_t instance, GPS_Status _status, uint64_t time_epoch_ms, const Location &_location, const Vector3f &_velocity, uint8_t _num_sats, uint16_t hdop) { if (instance >= GPS_MAX_RECEIVERS) { return; } uint32_t tnow = AP_HAL::millis(); GPS_State &istate = state[instance]; istate.status = _status; istate.location = _location; istate.location.options = 0; istate.velocity = _velocity; istate.ground_speed = norm(istate.velocity.x, istate.velocity.y); istate.ground_course = wrap_360(degrees(atan2f(istate.velocity.y, istate.velocity.x))); istate.hdop = hdop; istate.num_sats = _num_sats; istate.last_gps_time_ms = tnow; uint64_t gps_time_ms = time_epoch_ms - UNIX_OFFSET_MSEC; istate.time_week = gps_time_ms / MSEC_PER_WEEK; istate.time_week_ms = gps_time_ms - istate.time_week * MSEC_PER_WEEK; timing[instance].last_message_time_ms = tnow; timing[instance].last_fix_time_ms = tnow; _type[instance].set(GPS_TYPE_HIL); } // set accuracy for HIL void AP_GPS::setHIL_Accuracy(uint8_t instance, float vdop, float hacc, float vacc, float sacc, bool _have_vertical_velocity, uint32_t sample_ms) { if (instance >= GPS_MAX_RECEIVERS) { return; } GPS_State &istate = state[instance]; istate.vdop = vdop * 100; istate.horizontal_accuracy = hacc; istate.vertical_accuracy = vacc; istate.speed_accuracy = sacc; istate.have_horizontal_accuracy = true; istate.have_vertical_accuracy = true; istate.have_speed_accuracy = true; istate.have_vertical_velocity |= _have_vertical_velocity; if (sample_ms != 0) { timing[instance].last_message_time_ms = sample_ms; timing[instance].last_fix_time_ms = sample_ms; } } /** Lock a GPS port, prevening the GPS driver from using it. This can be used to allow a user to control a GPS port via the SERIAL_CONTROL protocol */ void AP_GPS::lock_port(uint8_t instance, bool lock) { if (instance >= GPS_MAX_RECEIVERS) { return; } if (lock) { locked_ports |= (1U<inject_data(data, len); } } void AP_GPS::send_mavlink_gps_raw(mavlink_channel_t chan) { static uint32_t last_send_time_ms[MAVLINK_COMM_NUM_BUFFERS]; if (status(0) > AP_GPS::NO_GPS) { // when we have a GPS then only send new data if (last_send_time_ms[chan] == last_message_time_ms(0)) { return; } last_send_time_ms[chan] = last_message_time_ms(0); } else { // when we don't have a GPS then send at 1Hz uint32_t now = AP_HAL::millis(); if (now - last_send_time_ms[chan] < 1000) { return; } last_send_time_ms[chan] = now; } const Location &loc = location(0); mavlink_msg_gps_raw_int_send( chan, last_fix_time_ms(0)*(uint64_t)1000, status(0), loc.lat, // in 1E7 degrees loc.lng, // in 1E7 degrees loc.alt * 10UL, // in mm get_hdop(0), get_vdop(0), ground_speed(0)*100, // cm/s ground_course(0)*100, // 1/100 degrees, num_sats(0)); } void AP_GPS::send_mavlink_gps2_raw(mavlink_channel_t chan) { static uint32_t last_send_time_ms[MAVLINK_COMM_NUM_BUFFERS]; if (num_instances < 2 || status(1) <= AP_GPS::NO_GPS) { return; } // when we have a GPS then only send new data if (last_send_time_ms[chan] == last_message_time_ms(1)) { return; } last_send_time_ms[chan] = last_message_time_ms(1); const Location &loc = location(1); mavlink_msg_gps2_raw_send( chan, last_fix_time_ms(1)*(uint64_t)1000, status(1), loc.lat, loc.lng, loc.alt * 10UL, get_hdop(1), get_vdop(1), ground_speed(1)*100, // cm/s ground_course(1)*100, // 1/100 degrees, num_sats(1), 0, 0); } void AP_GPS::send_mavlink_gps_rtk(mavlink_channel_t chan) { if (drivers[0] != nullptr && drivers[0]->highest_supported_status() > AP_GPS::GPS_OK_FIX_3D) { drivers[0]->send_mavlink_gps_rtk(chan); } } void AP_GPS::send_mavlink_gps2_rtk(mavlink_channel_t chan) { if (drivers[1] != nullptr && drivers[1]->highest_supported_status() > AP_GPS::GPS_OK_FIX_3D) { drivers[1]->send_mavlink_gps_rtk(chan); } } uint8_t AP_GPS::first_unconfigured_gps(void) const { for (int i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_type[i] != GPS_TYPE_NONE && (drivers[i] == nullptr || !drivers[i]->is_configured())) { return i; } } return GPS_ALL_CONFIGURED; } void AP_GPS::broadcast_first_configuration_failure_reason(void) const { uint8_t unconfigured = first_unconfigured_gps(); if (drivers[unconfigured] == nullptr) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "GPS %d: was not found", unconfigured + 1); } else { drivers[unconfigured]->broadcast_configuration_failure_reason(); } } // pre-arm check that all GPSs are close to each other. farthest distance between GPSs (in meters) is returned bool AP_GPS::all_consistent(float &distance) const { // return true immediately if only one valid receiver if (num_instances <= 1 || drivers[0] == nullptr || _type[0] == GPS_TYPE_NONE) { distance = 0; return true; } // calculate distance distance = location_3d_diff_NED(state[0].location, state[1].location).length(); // success if distance is within 50m return (distance < 50); } // pre-arm check of GPS blending. True means healthy or that blending is not being used bool AP_GPS::blend_health_check() const { return (_blend_health_counter < 50); } void AP_GPS::_broadcast_gps_type(const char *type, uint8_t instance, int8_t baud_index) { char buffer[64]; if (baud_index >= 0) { hal.util->snprintf(buffer, sizeof(buffer), "GPS %d: detected as %s at %d baud", instance, type, _baudrates[baud_index]); } else { hal.util->snprintf(buffer, sizeof(buffer), "GPS %d: detected as %s", instance, type); } GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, buffer); } /* re-assemble GPS_RTCM_DATA message */ void AP_GPS::handle_gps_rtcm_data(const mavlink_message_t *msg) { mavlink_gps_rtcm_data_t packet; mavlink_msg_gps_rtcm_data_decode(msg, &packet); if (packet.len > MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN) { // invalid packet return; } if ((packet.flags & 1) == 0) { // it is not fragmented, pass direct inject_data_all(packet.data, packet.len); return; } // see if we need to allocate re-assembly buffer if (rtcm_buffer == nullptr) { rtcm_buffer = (struct rtcm_buffer *)calloc(1, sizeof(*rtcm_buffer)); if (rtcm_buffer == nullptr) { // nothing to do but discard the data return; } } uint8_t fragment = (packet.flags >> 1U) & 0x03; uint8_t sequence = (packet.flags >> 3U) & 0x1F; // see if this fragment is consistent with existing fragments if (rtcm_buffer->fragments_received && (rtcm_buffer->sequence != sequence || (rtcm_buffer->fragments_received & (1U<sequence = sequence; rtcm_buffer->fragments_received |= (1U << fragment); // copy the data memcpy(&rtcm_buffer->buffer[MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*(uint16_t)fragment], packet.data, packet.len); // when we get a fragment of less than max size then we know the // number of fragments. Note that this means if you want to send a // block of RTCM data of an exact multiple of the buffer size you // need to send a final packet of zero length if (packet.len < MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN) { rtcm_buffer->fragment_count = fragment+1; rtcm_buffer->total_length = (MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*fragment) + packet.len; } else if (rtcm_buffer->fragments_received == 0x0F) { // special case of 4 full fragments rtcm_buffer->fragment_count = 4; rtcm_buffer->total_length = MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*4; } // see if we have all fragments if (rtcm_buffer->fragment_count != 0 && rtcm_buffer->fragments_received == (1U << rtcm_buffer->fragment_count) - 1) { // we have them all, inject inject_data_all(rtcm_buffer->buffer, rtcm_buffer->total_length); memset(rtcm_buffer, 0, sizeof(*rtcm_buffer)); } } /* inject data into all backends */ void AP_GPS::inject_data_all(const uint8_t *data, uint16_t len) { uint8_t i; for (i=0; iinject_data(data, len); } } } /* return the expected lag (in seconds) in the position and velocity readings from the gps */ float AP_GPS::get_lag(uint8_t instance) const { // return lag of blended GPS if (instance == GPS_MAX_RECEIVERS) { return _blended_lag_sec; } if (_delay_ms[instance] > 0) { // if the user has specified a non zero time delay, always return that value return 0.001f * (float)_delay_ms[instance]; } else if (drivers[instance] == nullptr || state[instance].status == NO_GPS) { // no GPS was detected in this instance // so return a default delay of 1 measurement interval return 0.001f * (float)get_rate_ms(instance); } else { // the user has not specified a delay so we determine it from the GPS type return drivers[instance]->get_lag(); } } // return a 3D vector defining the offset of the GPS antenna in meters relative to the body frame origin const Vector3f &AP_GPS::get_antenna_offset(uint8_t instance) const { if (instance == GPS_MAX_RECEIVERS) { // return an offset for the blended GPS solution return _blended_antenna_offset; } else { return _antenna_offset[instance]; } } /* return gps update rate in milliseconds */ uint16_t AP_GPS::get_rate_ms(uint8_t instance) const { // sanity check if (instance >= num_instances || _rate_ms[instance] <= 0) { return GPS_MAX_RATE_MS; } return MIN(_rate_ms[instance], GPS_MAX_RATE_MS); } /* calculate the weightings used to blend GPs location and velocity data */ bool AP_GPS::calc_blend_weights(void) { // zero the blend weights memset(&_blend_weights, 0, sizeof(_blend_weights)); // exit immediately if not enough receivers to do blending if (num_instances < 2 || drivers[1] == nullptr || _type[1] == GPS_TYPE_NONE) { return false; } // Use the oldest non-zero time, but if time difference is excessive, use newest to prevent a disconnected receiver from blocking updates uint32_t max_ms = 0; // newest non-zero system time of arrival of a GPS message uint32_t min_ms = -1; // oldest non-zero system time of arrival of a GPS message int16_t max_rate_ms = 0; // largest update interval of a GPS receiver for (uint8_t i=0; i max_ms) { max_ms = state[i].last_gps_time_ms; } if ((state[i].last_gps_time_ms < min_ms) && (state[i].last_gps_time_ms > 0)) { min_ms = state[i].last_gps_time_ms; } if (get_rate_ms(i) > max_rate_ms) { max_rate_ms = get_rate_ms(i); } } if ((int32_t)(max_ms - min_ms) < (int32_t)(2 * max_rate_ms)) { // data is not too delayed so use the oldest time_stamp to give a chance for data from that receiver to be updated state[GPS_BLENDED_INSTANCE].last_gps_time_ms = min_ms; } else { // receiver data has timed out so fail out of blending return false; } // calculate the sum squared speed accuracy across all GPS sensors float speed_accuracy_sum_sq = 0.0f; if (_blend_mask & BLEND_MASK_USE_SPD_ACC) { for (uint8_t i=0; i= GPS_OK_FIX_3D) { if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f) { speed_accuracy_sum_sq += state[i].speed_accuracy * state[i].speed_accuracy; } else { // not all receivers support this metric so set it to zero and don't use it speed_accuracy_sum_sq = 0.0f; break; } } } } // calculate the sum squared horizontal position accuracy across all GPS sensors float horizontal_accuracy_sum_sq = 0.0f; if (_blend_mask & BLEND_MASK_USE_HPOS_ACC) { for (uint8_t i=0; i= GPS_OK_FIX_2D) { if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f) { horizontal_accuracy_sum_sq += state[i].horizontal_accuracy * state[i].horizontal_accuracy; } else { // not all receivers support this metric so set it to zero and don't use it horizontal_accuracy_sum_sq = 0.0f; break; } } } } // calculate the sum squared vertical position accuracy across all GPS sensors float vertical_accuracy_sum_sq = 0.0f; if (_blend_mask & BLEND_MASK_USE_VPOS_ACC) { for (uint8_t i=0; i= GPS_OK_FIX_3D) { if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f) { vertical_accuracy_sum_sq += state[i].vertical_accuracy * state[i].vertical_accuracy; } else { // not all receivers support this metric so set it to zero and don't use it vertical_accuracy_sum_sq = 0.0f; break; } } } } // Check if we can do blending using reported accuracy bool can_do_blending = (horizontal_accuracy_sum_sq > 0.0f || vertical_accuracy_sum_sq > 0.0f || speed_accuracy_sum_sq > 0.0f); // if we cant do blending using reported accuracy, return false and hard switch logic will be used instead if (!can_do_blending) { return false; } float sum_of_all_weights = 0.0f; // calculate a weighting using the reported horizontal position float hpos_blend_weights[GPS_MAX_RECEIVERS] = {}; if (horizontal_accuracy_sum_sq > 0.0f && (_blend_mask & BLEND_MASK_USE_HPOS_ACC)) { // calculate the weights using the inverse of the variances float sum_of_hpos_weights = 0.0f; for (uint8_t i=0; i= GPS_OK_FIX_2D && state[i].horizontal_accuracy >= 0.001f) { hpos_blend_weights[i] = horizontal_accuracy_sum_sq / (state[i].horizontal_accuracy * state[i].horizontal_accuracy); sum_of_hpos_weights += hpos_blend_weights[i]; } } // normalise the weights if (sum_of_hpos_weights > 0.0f) { for (uint8_t i=0; i 0.0f && (_blend_mask & BLEND_MASK_USE_VPOS_ACC)) { // calculate the weights using the inverse of the variances float sum_of_vpos_weights = 0.0f; for (uint8_t i=0; i= GPS_OK_FIX_3D && state[i].vertical_accuracy >= 0.001f) { vpos_blend_weights[i] = vertical_accuracy_sum_sq / (state[i].vertical_accuracy * state[i].vertical_accuracy); sum_of_vpos_weights += vpos_blend_weights[i]; } } // normalise the weights if (sum_of_vpos_weights > 0.0f) { for (uint8_t i=0; i 0.0f && (_blend_mask & BLEND_MASK_USE_SPD_ACC)) { // calculate the weights using the inverse of the variances float sum_of_spd_weights = 0.0f; for (uint8_t i=0; i= GPS_OK_FIX_3D && state[i].speed_accuracy >= 0.001f) { spd_blend_weights[i] = speed_accuracy_sum_sq / (state[i].speed_accuracy * state[i].speed_accuracy); sum_of_spd_weights += spd_blend_weights[i]; } } // normalise the weights if (sum_of_spd_weights > 0.0f) { for (uint8_t i=0; i state[GPS_BLENDED_INSTANCE].status) { state[GPS_BLENDED_INSTANCE].status = state[i].status; } // calculate a blended average velocity state[GPS_BLENDED_INSTANCE].velocity += state[i].velocity * _blend_weights[i]; // report the best valid accuracies and DOP metrics if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f && state[i].horizontal_accuracy < state[GPS_BLENDED_INSTANCE].horizontal_accuracy) { state[GPS_BLENDED_INSTANCE].have_horizontal_accuracy = true; state[GPS_BLENDED_INSTANCE].horizontal_accuracy = state[i].horizontal_accuracy; } if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f && state[i].vertical_accuracy < state[GPS_BLENDED_INSTANCE].vertical_accuracy) { state[GPS_BLENDED_INSTANCE].have_vertical_accuracy = true; state[GPS_BLENDED_INSTANCE].vertical_accuracy = state[i].vertical_accuracy; } if (state[i].have_vertical_velocity) { state[GPS_BLENDED_INSTANCE].have_vertical_velocity = true; } if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f && state[i].speed_accuracy < state[GPS_BLENDED_INSTANCE].speed_accuracy) { state[GPS_BLENDED_INSTANCE].have_speed_accuracy = true; state[GPS_BLENDED_INSTANCE].speed_accuracy = state[i].speed_accuracy; } if (state[i].hdop > 0 && state[i].hdop < state[GPS_BLENDED_INSTANCE].hdop) { state[GPS_BLENDED_INSTANCE].hdop = state[i].hdop; } if (state[i].vdop > 0 && state[i].vdop < state[GPS_BLENDED_INSTANCE].vdop) { state[GPS_BLENDED_INSTANCE].vdop = state[i].vdop; } if (state[i].num_sats > 0 && state[i].num_sats > state[GPS_BLENDED_INSTANCE].num_sats) { state[GPS_BLENDED_INSTANCE].num_sats = state[i].num_sats; } // report a blended average GPS antenna position Vector3f temp_antenna_offset = _antenna_offset[i]; temp_antenna_offset *= _blend_weights[i]; _blended_antenna_offset += temp_antenna_offset; // blend the timing data if (timing[i].last_fix_time_ms > timing[GPS_BLENDED_INSTANCE].last_fix_time_ms) { timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = timing[i].last_fix_time_ms; } if (timing[i].last_message_time_ms > timing[GPS_BLENDED_INSTANCE].last_message_time_ms) { timing[GPS_BLENDED_INSTANCE].last_message_time_ms = timing[i].last_message_time_ms; } } /* * Calculate an instantaneous weighted/blended average location from the available GPS instances and store in the _output_state. * This will be statisticaly the most likely location, but will be not stable enough for direct use by the autopilot. */ // Use the GPS with the highest weighting as the reference position float best_weight = 0.0f; uint8_t best_index = 0; for (uint8_t i=0; i best_weight) { best_weight = _blend_weights[i]; best_index = i; state[GPS_BLENDED_INSTANCE].location = state[i].location; } } // Calculate the weighted sum of horizontal and vertical position offsets relative to the reference position Vector2f blended_NE_offset_m; float blended_alt_offset_cm = 0.0f; blended_NE_offset_m.zero(); for (uint8_t i=0; i 0.0f && i != best_index) { blended_NE_offset_m += location_diff(state[GPS_BLENDED_INSTANCE].location, state[i].location) * _blend_weights[i]; blended_alt_offset_cm += (float)(state[i].location.alt - state[GPS_BLENDED_INSTANCE].location.alt) * _blend_weights[i]; } } // Add the sum of weighted offsets to the reference location to obtain the blended location location_offset(state[GPS_BLENDED_INSTANCE].location, blended_NE_offset_m.x, blended_NE_offset_m.y); state[GPS_BLENDED_INSTANCE].location.alt += (int)blended_alt_offset_cm; // Calculate ground speed and course from blended velocity vector state[GPS_BLENDED_INSTANCE].ground_speed = norm(state[GPS_BLENDED_INSTANCE].velocity.x, state[GPS_BLENDED_INSTANCE].velocity.y); state[GPS_BLENDED_INSTANCE].ground_course = wrap_360(degrees(atan2f(state[GPS_BLENDED_INSTANCE].velocity.y, state[GPS_BLENDED_INSTANCE].velocity.x))); /* * The blended location in _output_state.location is not stable enough to be used by the autopilot * as it will move around as the relative accuracy changes. To mitigate this effect a low-pass filtered * offset from each GPS location to the blended location is calculated and the filtered offset is applied * to each receiver. */ // Calculate filter coefficients to be applied to the offsets for each GPS position and height offset // A weighting of 1 will make the offset adjust the slowest, a weighting of 0 will make it adjust with zero filtering float alpha[GPS_MAX_RECEIVERS] = {}; for (uint8_t i=0; i 0) { float min_alpha = constrain_float(_omega_lpf * 0.001f * (float)(state[i].last_gps_time_ms - _last_time_updated[i]), 0.0f, 1.0f); if (_blend_weights[i] > min_alpha) { alpha[i] = min_alpha / _blend_weights[i]; } else { alpha[i] = 1.0f; } _last_time_updated[i] = state[i].last_gps_time_ms; } } // Calculate the offset from each GPS solution to the blended solution for (uint8_t i=0; i 0.0f) { blended_NE_offset_m += location_diff(state[GPS_BLENDED_INSTANCE].location, corrected_location[i]) * _blend_weights[i]; blended_alt_offset_cm += (float)(corrected_location[i].alt - state[GPS_BLENDED_INSTANCE].location.alt) * _blend_weights[i]; } } // If the GPS week is the same then use a blended time_week_ms // If week is different, then use time stamp from GPS with largest weighting // detect inconsistent week data uint8_t last_week_instance = 0; bool weeks_consistent = true; for (uint8_t i=0; i 0) { // this is our first valid sensor week data last_week_instance = state[i].time_week; } else if (last_week_instance != 0 && _blend_weights[i] > 0 && last_week_instance != state[i].time_week) { // there is valid sensor week data that is inconsistent weeks_consistent = false; } } // calculate output if (!weeks_consistent) { // use data from highest weighted sensor state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week; state[GPS_BLENDED_INSTANCE].time_week_ms = state[best_index].time_week_ms; } else { // use week number from highest weighting GPS (they should all have the same week number) state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week; // calculate a blended value for the number of ms lapsed in the week double temp_time_0 = 0.0; for (uint8_t i=0; i 0.0f) { temp_time_0 += (double)state[i].time_week_ms * (double)_blend_weights[i]; } } state[GPS_BLENDED_INSTANCE].time_week_ms = (uint32_t)temp_time_0; } // calculate a blended value for the timing data and lag double temp_time_1 = 0.0; double temp_time_2 = 0.0; for (uint8_t i=0; i 0.0f) { temp_time_1 += (double)timing[i].last_fix_time_ms * (double) _blend_weights[i]; temp_time_2 += (double)timing[i].last_message_time_ms * (double)_blend_weights[i]; _blended_lag_sec += get_lag(i) * _blended_lag_sec; } } timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = (uint32_t)temp_time_1; timing[GPS_BLENDED_INSTANCE].last_message_time_ms = (uint32_t)temp_time_2; }