/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * NavEKF based AHRS (Attitude Heading Reference System) interface for * ArduPilot * */ #include #include #if AP_AHRS_NAVEKF_AVAILABLE extern const AP_HAL::HAL& hal; // return the smoothed gyro vector corrected for drift const Vector3f AP_AHRS_NavEKF::get_gyro(void) const { return AP_AHRS_DCM::get_gyro(); } const Matrix3f &AP_AHRS_NavEKF::get_dcm_matrix(void) const { if (!ekf_started) { return AP_AHRS_DCM::get_dcm_matrix(); } return _dcm_matrix; } const Vector3f &AP_AHRS_NavEKF::get_gyro_drift(void) const { return AP_AHRS_DCM::get_gyro_drift(); } void AP_AHRS_NavEKF::update(void) { AP_AHRS_DCM::update(); // keep DCM attitude available for get_secondary_attitude() _dcm_attitude(roll, pitch, yaw); if (!ekf_started) { if (start_time_ms == 0) { start_time_ms = hal.scheduler->millis(); } // if we have GPS lock and a compass set we can start the EKF if (get_compass() && _gps && _gps->status() >= GPS::GPS_OK_FIX_3D && hal.scheduler->millis() - start_time_ms > startup_delay_ms) { ekf_started = true; EKF.InitialiseFilter(); } } if (ekf_started) { EKF.UpdateFilter(); if (using_EKF()) { EKF.getRotationBodyToNED(_dcm_matrix); Vector3f eulers; EKF.getEulerAngles(eulers); roll = eulers.x; pitch = eulers.y; yaw = eulers.z; roll_sensor = degrees(roll) * 100; pitch_sensor = degrees(pitch) * 100; yaw_sensor = degrees(yaw) * 100; if (yaw_sensor < 0) yaw_sensor += 36000; } } } void AP_AHRS_NavEKF::reset(bool recover_eulers) { AP_AHRS_DCM::reset(recover_eulers); if (ekf_started) { EKF.InitialiseFilter(); } } // reset the current attitude, used on new IMU calibration void AP_AHRS_NavEKF::reset_attitude(const float &_roll, const float &_pitch, const float &_yaw) { AP_AHRS_DCM::reset_attitude(_roll, _pitch, _yaw); if (ekf_started) { EKF.InitialiseFilter(); } } // dead-reckoning support bool AP_AHRS_NavEKF::get_position(struct Location &loc) { if (using_EKF() && EKF.getLLH(loc)) { return true; } return AP_AHRS_DCM::get_position(loc); } // status reporting of estimated errors float AP_AHRS_NavEKF::get_error_rp(void) { return AP_AHRS_DCM::get_error_rp(); } float AP_AHRS_NavEKF::get_error_yaw(void) { return AP_AHRS_DCM::get_error_yaw(); } // return a wind estimation vector, in m/s Vector3f AP_AHRS_NavEKF::wind_estimate(void) { if (!using_EKF()) { return AP_AHRS_DCM::wind_estimate(); } Vector3f wind; EKF.getWind(wind); return wind; } // return an airspeed estimate if available. return true // if we have an estimate bool AP_AHRS_NavEKF::airspeed_estimate(float *airspeed_ret) { return AP_AHRS_DCM::airspeed_estimate(airspeed_ret); } // true if compass is being used bool AP_AHRS_NavEKF::use_compass(void) { return AP_AHRS_DCM::use_compass(); } // return secondary attitude solution if available, as eulers in radians bool AP_AHRS_NavEKF::get_secondary_attitude(Vector3f &eulers) { if (using_EKF()) { // return DCM attitude eulers = _dcm_attitude; return true; } if (ekf_started) { // EKF is secondary EKF.getEulerAngles(eulers); return true; } // no secondary available return false; } // return secondary position solution if available bool AP_AHRS_NavEKF::get_secondary_position(struct Location &loc) { if (using_EKF()) { // return DCM position AP_AHRS_DCM::get_position(loc); return true; } if (ekf_started) { // EKF is secondary EKF.getLLH(loc); return true; } // no secondary available return false; } // EKF has a better ground speed vector estimate Vector2f AP_AHRS_NavEKF::groundspeed_vector(void) { if (!using_EKF()) { return AP_AHRS_DCM::groundspeed_vector(); } Vector3f vec; EKF.getVelNED(vec); return Vector2f(vec.x, vec.y); } void AP_AHRS_NavEKF::set_home(int32_t lat, int32_t lng, int32_t alt_cm) { AP_AHRS_DCM::set_home(lat, lng, alt_cm); if (ekf_started) { EKF.InitialiseFilter(); } } // return true if inertial navigation is active bool AP_AHRS_NavEKF::have_inertial_nav(void) const { return using_EKF(); } // return a ground velocity in meters/second, North/East/Down order Vector3f AP_AHRS_NavEKF::get_velocity_NED(void) { if (using_EKF()) { Vector3f vec; EKF.getVelNED(vec); return vec; } return AP_AHRS_DCM::get_velocity_NED(); } Vector3f AP_AHRS_NavEKF::get_relative_position_NED(void) { Vector3f ret; if (using_EKF() && EKF.getPosNED(ret)) { return ret; } return AP_AHRS_DCM::get_relative_position_NED(); } #endif // AP_AHRS_NAVEKF_AVAILABLE