/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* driver for TeraRanger I2C rangefinders */ #include "AP_RangeFinder_TeraRangerI2C.h" #include #include #include extern const AP_HAL::HAL& hal; // registers #define TR_MEASURE 0x00 #define TR_WHOAMI 0x01 #define TR_WHOAMI_VALUE 0xA1 /* The constructor also initializes the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_TeraRangerI2C::AP_RangeFinder_TeraRangerI2C(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, AP_HAL::OwnPtr i2c_dev) : AP_RangeFinder_Backend(_state, _params) , dev(std::move(i2c_dev)) { } /* detect if a TeraRanger rangefinder is connected. We'll detect by trying to take a reading on I2C. If we get a result the sensor is there. */ AP_RangeFinder_Backend *AP_RangeFinder_TeraRangerI2C::detect(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, AP_HAL::OwnPtr i2c_dev) { if (!i2c_dev) { return nullptr; } AP_RangeFinder_TeraRangerI2C *sensor = new AP_RangeFinder_TeraRangerI2C(_state, _params, std::move(i2c_dev)); if (!sensor) { return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } /* initialise sensor */ bool AP_RangeFinder_TeraRangerI2C::init(void) { dev->get_semaphore()->take_blocking(); dev->set_retries(10); // check WHOAMI uint8_t whoami; if (!dev->read_registers(TR_WHOAMI, &whoami, 1) || whoami != TR_WHOAMI_VALUE) { dev->get_semaphore()->give(); return false; } if (!measure()) { dev->get_semaphore()->give(); return false; } // give time for the sensor to process the request hal.scheduler->delay(70); uint16_t _distance_cm; if (!collect_raw(_distance_cm)) { dev->get_semaphore()->give(); return false; } dev->get_semaphore()->give(); dev->set_retries(1); dev->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_RangeFinder_TeraRangerI2C::timer, void)); return true; } // measure() - ask sensor to make a range reading bool AP_RangeFinder_TeraRangerI2C::measure() { uint8_t cmd = TR_MEASURE; return dev->transfer(&cmd, 1, nullptr, 0); } // collect_raw() - return last value measured by sensor bool AP_RangeFinder_TeraRangerI2C::collect_raw(uint16_t &raw_distance) { uint8_t d[3]; // Take range reading if (!dev->transfer(nullptr, 0, d, sizeof(d))) { return false; } // Check for CRC if (d[2] != crc_crc8(d, 2)) { return false; } else { raw_distance = ((uint16_t(d[0]) << 8) | d[1]); return true; } } // Checks for error code and if correct converts to cm bool AP_RangeFinder_TeraRangerI2C::process_raw_measure(uint16_t raw_distance, uint16_t &output_distance_cm) { // Check for error codes if (raw_distance == 0xFFFF) { // Too far away is unreliable so we dont enforce max range here return false; } else if (raw_distance == 0x0000) { // Too close output_distance_cm = params.min_distance_cm; return true; } else if (raw_distance == 0x0001) { // Unable to measure return false; } else { output_distance_cm = raw_distance/10; // Conversion to centimeters return true; } } /* timer called at 100Hz, EVO sensors max freq is 100..240Hz */ void AP_RangeFinder_TeraRangerI2C::timer(void) { // Take a reading uint16_t _raw_distance = 0; uint16_t _distance_cm = 0; if (collect_raw(_raw_distance)) { WITH_SEMAPHORE(_sem); if (process_raw_measure(_raw_distance, _distance_cm)){ accum.sum += _distance_cm; accum.count++; } } // and immediately ask for a new reading measure(); } /* update the state of the sensor */ void AP_RangeFinder_TeraRangerI2C::update(void) { WITH_SEMAPHORE(_sem); if (accum.count > 0) { state.distance_cm = accum.sum / accum.count; state.last_reading_ms = AP_HAL::millis(); accum.sum = 0; accum.count = 0; update_status(); } else if (AP_HAL::millis() - state.last_reading_ms > 200) { set_status(RangeFinder::Status::NoData); } }