/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_RangeFinder.h" #include "AP_RangeFinder_analog.h" #include "AP_RangeFinder_PulsedLightLRF.h" #include "AP_RangeFinder_MaxsonarI2CXL.h" #include "AP_RangeFinder_MaxsonarSerialLV.h" #include "AP_RangeFinder_BBB_PRU.h" #include "AP_RangeFinder_LightWareI2C.h" #include "AP_RangeFinder_LightWareSerial.h" #if (CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO) && \ defined(HAVE_LIBIIO) #include "AP_RangeFinder_Bebop.h" #endif #include "AP_RangeFinder_MAVLink.h" #include "AP_RangeFinder_LeddarOne.h" #include "AP_RangeFinder_uLanding.h" #include "AP_RangeFinder_TeraRangerI2C.h" #include "AP_RangeFinder_VL53L0X.h" #include "AP_RangeFinder_VL53L1X.h" #include "AP_RangeFinder_NMEA.h" #include "AP_RangeFinder_Wasp.h" #include "AP_RangeFinder_Benewake_TF02.h" #include "AP_RangeFinder_Benewake_TF03.h" #include "AP_RangeFinder_Benewake_TFMini.h" #include "AP_RangeFinder_Benewake_TFMiniPlus.h" #include "AP_RangeFinder_PWM.h" #include "AP_RangeFinder_GYUS42v2.h" #include "AP_RangeFinder_HC_SR04.h" #include "AP_RangeFinder_BLPing.h" #include "AP_RangeFinder_UAVCAN.h" #include "AP_RangeFinder_Lanbao.h" #include "AP_RangeFinder_LeddarVu8.h" #include "AP_RangeFinder_SITL.h" #include "AP_RangeFinder_MSP.h" #include #include #include extern const AP_HAL::HAL &hal; // table of user settable parameters const AP_Param::GroupInfo RangeFinder::var_info[] = { // @Group: 1_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[0], "1_", 25, RangeFinder, AP_RangeFinder_Params), // @Group: 1_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[0], "1_", 57, RangeFinder, backend_var_info[0]), #if RANGEFINDER_MAX_INSTANCES > 1 // @Group: 2_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[1], "2_", 27, RangeFinder, AP_RangeFinder_Params), // @Group: 2_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[1], "2_", 58, RangeFinder, backend_var_info[1]), #endif #if RANGEFINDER_MAX_INSTANCES > 2 // @Group: 3_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[2], "3_", 29, RangeFinder, AP_RangeFinder_Params), // @Group: 3_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[2], "3_", 59, RangeFinder, backend_var_info[2]), #endif #if RANGEFINDER_MAX_INSTANCES > 3 // @Group: 4_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[3], "4_", 31, RangeFinder, AP_RangeFinder_Params), // @Group: 4_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[3], "4_", 60, RangeFinder, backend_var_info[3]), #endif #if RANGEFINDER_MAX_INSTANCES > 4 // @Group: 5_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[4], "5_", 33, RangeFinder, AP_RangeFinder_Params), // @Group: 5_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[4], "5_", 34, RangeFinder, backend_var_info[4]), #endif #if RANGEFINDER_MAX_INSTANCES > 5 // @Group: 6_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[5], "6_", 35, RangeFinder, AP_RangeFinder_Params), // @Group: 6_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[5], "6_", 36, RangeFinder, backend_var_info[5]), #endif #if RANGEFINDER_MAX_INSTANCES > 6 // @Group: 7_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[6], "7_", 37, RangeFinder, AP_RangeFinder_Params), // @Group: 7_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[6], "7_", 38, RangeFinder, backend_var_info[6]), #endif #if RANGEFINDER_MAX_INSTANCES > 7 // @Group: 8_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[7], "8_", 39, RangeFinder, AP_RangeFinder_Params), // @Group: 8_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[7], "8_", 40, RangeFinder, backend_var_info[7]), #endif #if RANGEFINDER_MAX_INSTANCES > 8 // @Group: 9_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[8], "9_", 41, RangeFinder, AP_RangeFinder_Params), // @Group: 9_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[8], "9_", 42, RangeFinder, backend_var_info[8]), #endif #if RANGEFINDER_MAX_INSTANCES > 9 // @Group: A_ // @Path: AP_RangeFinder_Params.cpp AP_SUBGROUPINFO(params[9], "A_", 43, RangeFinder, AP_RangeFinder_Params), // @Group: A_ // @Path: AP_RangeFinder_Wasp.cpp AP_SUBGROUPVARPTR(drivers[9], "A_", 44, RangeFinder, backend_var_info[9]), #endif AP_GROUPEND }; const AP_Param::GroupInfo *RangeFinder::backend_var_info[RANGEFINDER_MAX_INSTANCES]; RangeFinder::RangeFinder() { AP_Param::setup_object_defaults(this, var_info); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_singleton != nullptr) { AP_HAL::panic("Rangefinder must be singleton"); } #endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL _singleton = this; } void RangeFinder::convert_params(void) { if (params[0].type.configured_in_storage()) { // _params[0]._type will always be configured in storage after conversion is done the first time return; } struct ConversionTable { uint8_t old_element; uint8_t new_index; uint8_t instance; }; const struct ConversionTable conversionTable[] = { // rangefinder 1 {0, 0, 0}, //0, TYPE 1 {1, 1, 0}, //1, PIN 1 {2, 2, 0}, //2, SCALING 1 {3, 3, 0}, //3, OFFSET 1 {4, 4, 0}, //4, FUNCTION 1 {5, 5, 0}, //5, MIN_CM 1 {6, 6, 0}, //6, MAX_CM 1 {7, 7, 0}, //7, STOP_PIN 1 {9, 8, 0}, //9, RMETRIC 1 {10, 9, 0}, //10, PWRRNG 1 (previously existed only once for all sensors) {11, 10, 0}, //11, GNDCLEAR 1 {23, 11, 0}, //23, ADDR 1 {49, 12, 0}, //49, POS 1 {53, 13, 0}, //53, ORIENT 1 // rangefinder 2 {12, 0, 1}, //12, TYPE 2 {13, 1, 1}, //13, PIN 2 {14, 2, 1}, //14, SCALING 2 {15, 3, 1}, //15, OFFSET 2 {16, 4, 1}, //16, FUNCTION 2 {17, 5, 1}, //17, MIN_CM 2 {18, 6, 1}, //18, MAX_CM 2 {19, 7, 1}, //19, STOP_PIN 2 {21, 8, 1}, //21, RMETRIC 2 {10, 9, 1}, //10, PWRRNG 1 (previously existed only once for all sensors) {22, 10, 1}, //22, GNDCLEAR 2 {24, 11, 1}, //24, ADDR 2 {50, 12, 1}, //50, POS 2 {54, 13, 1}, //54, ORIENT 2 }; char param_name[17] = {0}; AP_Param::ConversionInfo info; info.new_name = param_name; #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) info.old_key = 71; #elif APM_BUILD_TYPE(APM_BUILD_ArduCopter) info.old_key = 53; #elif APM_BUILD_TYPE(APM_BUILD_ArduSub) info.old_key = 35; #elif APM_BUILD_TYPE(APM_BUILD_Rover) info.old_key = 197; #else params[0].type.save(true); return; // no conversion is supported on this platform #endif for (uint8_t i = 0; i < ARRAY_SIZE(conversionTable); i++) { uint8_t param_instance = conversionTable[i].instance + 1; uint8_t destination_index = conversionTable[i].new_index; info.old_group_element = conversionTable[i].old_element; info.type = (ap_var_type)AP_RangeFinder_Params::var_info[destination_index].type; hal.util->snprintf(param_name, sizeof(param_name), "RNGFND%X_%s", param_instance, AP_RangeFinder_Params::var_info[destination_index].name); param_name[sizeof(param_name)-1] = '\0'; AP_Param::convert_old_parameter(&info, 1.0f, 0); } // force _params[0]._type into storage to flag that conversion has been done params[0].type.save(true); } /* initialise the RangeFinder class. We do detection of attached range finders here. For now we won't allow for hot-plugging of rangefinders. */ void RangeFinder::init(enum Rotation orientation_default) { if (init_done) { // init called a 2nd time? return; } init_done = true; convert_params(); // set orientation defaults for (uint8_t i=0; iupdate(); } } #ifndef HAL_BUILD_AP_PERIPH Log_RFND(); #endif } bool RangeFinder::_add_backend(AP_RangeFinder_Backend *backend) { if (!backend) { return false; } if (num_instances == RANGEFINDER_MAX_INSTANCES) { AP_HAL::panic("Too many RANGERS backends"); } drivers[num_instances++] = backend; return true; } /* detect if an instance of a rangefinder is connected. */ void RangeFinder::detect_instance(uint8_t instance, uint8_t& serial_instance) { const Type _type = (Type)params[instance].type.get(); switch (_type) { case Type::PLI2C: case Type::PLI2CV3: case Type::PLI2CV3HP: FOREACH_I2C(i) { if (_add_backend(AP_RangeFinder_PulsedLightLRF::detect(i, state[instance], params[instance], _type))) { break; } } break; case Type::MBI2C: FOREACH_I2C(i) { if (_add_backend(AP_RangeFinder_MaxsonarI2CXL::detect(state[instance], params[instance], hal.i2c_mgr->get_device(i, AP_RANGE_FINDER_MAXSONARI2CXL_DEFAULT_ADDR)))) { break; } } break; case Type::LWI2C: if (params[instance].address) { // the LW20 needs a long time to boot up, so we delay 1.5s here if (!hal.util->was_watchdog_armed()) { hal.scheduler->delay(1500); } #ifdef HAL_RANGEFINDER_LIGHTWARE_I2C_BUS _add_backend(AP_RangeFinder_LightWareI2C::detect(state[instance], params[instance], hal.i2c_mgr->get_device(HAL_RANGEFINDER_LIGHTWARE_I2C_BUS, params[instance].address))); #else FOREACH_I2C(i) { if (_add_backend(AP_RangeFinder_LightWareI2C::detect(state[instance], params[instance], hal.i2c_mgr->get_device(i, params[instance].address)))) { break; } } #endif } break; case Type::TRI2C: if (params[instance].address) { FOREACH_I2C(i) { if (_add_backend(AP_RangeFinder_TeraRangerI2C::detect(state[instance], params[instance], hal.i2c_mgr->get_device(i, params[instance].address)))) { break; } } } break; case Type::VL53L0X: case Type::VL53L1X_Short: FOREACH_I2C(i) { if (_add_backend(AP_RangeFinder_VL53L0X::detect(state[instance], params[instance], hal.i2c_mgr->get_device(i, params[instance].address)))) { break; } if (_add_backend(AP_RangeFinder_VL53L1X::detect(state[instance], params[instance], hal.i2c_mgr->get_device(i, params[instance].address), _type == Type::VL53L1X_Short ? AP_RangeFinder_VL53L1X::DistanceMode::Short : AP_RangeFinder_VL53L1X::DistanceMode::Long))) { break; } } break; case Type::BenewakeTFminiPlus: FOREACH_I2C(i) { if (_add_backend(AP_RangeFinder_Benewake_TFMiniPlus::detect(state[instance], params[instance], hal.i2c_mgr->get_device(i, params[instance].address)))) { break; } } break; case Type::PX4_PWM: #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS #ifndef HAL_BUILD_AP_PERIPH // to ease moving from PX4 to ChibiOS we'll lie a little about // the backend driver... if (AP_RangeFinder_PWM::detect()) { drivers[instance] = new AP_RangeFinder_PWM(state[instance], params[instance], estimated_terrain_height); } #endif #endif break; case Type::BBB_PRU: #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI if (AP_RangeFinder_BBB_PRU::detect()) { drivers[instance] = new AP_RangeFinder_BBB_PRU(state[instance], params[instance]); } #endif break; case Type::LWSER: if (AP_RangeFinder_LightWareSerial::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_LightWareSerial(state[instance], params[instance], serial_instance++); } break; case Type::LEDDARONE: if (AP_RangeFinder_LeddarOne::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_LeddarOne(state[instance], params[instance], serial_instance++); } break; case Type::ULANDING: if (AP_RangeFinder_uLanding::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_uLanding(state[instance], params[instance], serial_instance++); } break; case Type::BEBOP: #if (CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO) && defined(HAVE_LIBIIO) if (AP_RangeFinder_Bebop::detect()) { drivers[instance] = new AP_RangeFinder_Bebop(state[instance], params[instance]); } #endif break; case Type::MAVLink: #ifndef HAL_BUILD_AP_PERIPH if (AP_RangeFinder_MAVLink::detect()) { drivers[instance] = new AP_RangeFinder_MAVLink(state[instance], params[instance]); } #endif break; case Type::MBSER: if (AP_RangeFinder_MaxsonarSerialLV::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_MaxsonarSerialLV(state[instance], params[instance], serial_instance++); } break; case Type::ANALOG: #ifndef HAL_BUILD_AP_PERIPH // note that analog will always come back as present if the pin is valid if (AP_RangeFinder_analog::detect(params[instance])) { drivers[instance] = new AP_RangeFinder_analog(state[instance], params[instance]); } #endif break; case Type::HC_SR04: #ifndef HAL_BUILD_AP_PERIPH // note that this will always come back as present if the pin is valid if (AP_RangeFinder_HC_SR04::detect(params[instance])) { drivers[instance] = new AP_RangeFinder_HC_SR04(state[instance], params[instance]); } #endif break; case Type::NMEA: if (AP_RangeFinder_NMEA::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_NMEA(state[instance], params[instance], serial_instance++); } break; case Type::WASP: if (AP_RangeFinder_Wasp::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_Wasp(state[instance], params[instance], serial_instance++); } break; case Type::BenewakeTF02: if (AP_RangeFinder_Benewake_TF02::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_Benewake_TF02(state[instance], params[instance], serial_instance++); } break; case Type::BenewakeTFmini: if (AP_RangeFinder_Benewake_TFMini::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_Benewake_TFMini(state[instance], params[instance], serial_instance++); } break; case Type::BenewakeTF03: if (AP_RangeFinder_Benewake_TF03::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_Benewake_TF03(state[instance], params[instance], serial_instance++); } break; case Type::PWM: #ifndef HAL_BUILD_AP_PERIPH if (AP_RangeFinder_PWM::detect()) { drivers[instance] = new AP_RangeFinder_PWM(state[instance], params[instance], estimated_terrain_height); } #endif break; case Type::BLPing: if (AP_RangeFinder_BLPing::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_BLPing(state[instance], params[instance], serial_instance++); } break; case Type::Lanbao: if (AP_RangeFinder_Lanbao::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_Lanbao(state[instance], params[instance], serial_instance++); } break; case Type::LeddarVu8_Serial: if (AP_RangeFinder_LeddarVu8::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_LeddarVu8(state[instance], params[instance], serial_instance++); } break; case Type::UAVCAN: #if HAL_ENABLE_LIBUAVCAN_DRIVERS /* the UAVCAN driver gets created when we first receive a measurement. We take the instance slot now, even if we don't yet have the driver */ num_instances = MAX(num_instances, instance+1); #endif break; case Type::GYUS42v2: if (AP_RangeFinder_GYUS42v2::detect(serial_instance)) { drivers[instance] = new AP_RangeFinder_GYUS42v2(state[instance], params[instance], serial_instance++); } break; case Type::SITL: #if CONFIG_HAL_BOARD == HAL_BOARD_SITL drivers[instance] = new AP_RangeFinder_SITL(state[instance], params[instance], instance); #endif break; case Type::MSP: #if HAL_MSP_RANGEFINDER_ENABLED if (AP_RangeFinder_MSP::detect()) { drivers[instance] = new AP_RangeFinder_MSP(state[instance], params[instance]); } #endif // HAL_MSP_RANGEFINDER_ENABLED break; case Type::NONE: break; } // if the backend has some local parameters then make those available in the tree if (drivers[instance] && state[instance].var_info) { backend_var_info[instance] = state[instance].var_info; AP_Param::load_object_from_eeprom(drivers[instance], backend_var_info[instance]); // param count could have changed AP_Param::invalidate_count(); } } AP_RangeFinder_Backend *RangeFinder::get_backend(uint8_t id) const { if (id >= num_instances) { return nullptr; } if (drivers[id] != nullptr) { if (drivers[id]->type() == Type::NONE) { // pretend it isn't here; disabled at runtime? return nullptr; } } return drivers[id]; }; RangeFinder::Status RangeFinder::status_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return Status::NotConnected; } return backend->status(); } void RangeFinder::handle_msg(const mavlink_message_t &msg) { uint8_t i; for (i=0; ihandle_msg(msg); } } } #if HAL_MSP_RANGEFINDER_ENABLED void RangeFinder::handle_msp(const MSP::msp_rangefinder_data_message_t &pkt) { uint8_t i; for (i=0; ihandle_msp(pkt); } } } #endif // HAL_MSP_RANGEFINDER_ENABLED // return true if we have a range finder with the specified orientation bool RangeFinder::has_orientation(enum Rotation orientation) const { return (find_instance(orientation) != nullptr); } // find first range finder instance with the specified orientation AP_RangeFinder_Backend *RangeFinder::find_instance(enum Rotation orientation) const { // first try for a rangefinder that is in range for (uint8_t i=0; iorientation() == orientation && backend->status() == Status::Good) { return backend; } } // if none in range then return first with correct orientation for (uint8_t i=0; iorientation() == orientation) { return backend; } } return nullptr; } uint16_t RangeFinder::distance_cm_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->distance_cm(); } uint16_t RangeFinder::voltage_mv_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->voltage_mv(); } int16_t RangeFinder::max_distance_cm_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->max_distance_cm(); } int16_t RangeFinder::min_distance_cm_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->min_distance_cm(); } int16_t RangeFinder::ground_clearance_cm_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->ground_clearance_cm(); } bool RangeFinder::has_data_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return false; } return backend->has_data(); } uint8_t RangeFinder::range_valid_count_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->range_valid_count(); } const Vector3f &RangeFinder::get_pos_offset_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return pos_offset_zero; } return backend->get_pos_offset(); } uint32_t RangeFinder::last_reading_ms(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return 0; } return backend->last_reading_ms(); } MAV_DISTANCE_SENSOR RangeFinder::get_mav_distance_sensor_type_orient(enum Rotation orientation) const { AP_RangeFinder_Backend *backend = find_instance(orientation); if (backend == nullptr) { return MAV_DISTANCE_SENSOR_UNKNOWN; } return backend->get_mav_distance_sensor_type(); } // Write an RFND (rangefinder) packet void RangeFinder::Log_RFND() { if (_log_rfnd_bit == uint32_t(-1)) { return; } AP_Logger &logger = AP::logger(); if (!logger.should_log(_log_rfnd_bit)) { return; } for (uint8_t i=0; idistance_cm(), status : (uint8_t)s->status(), orient : s->orientation(), }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } } bool RangeFinder::prearm_healthy(char *failure_msg, const uint8_t failure_msg_len) const { for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) { if (((Type)params[i].type.get() != Type::NONE) && (drivers[i] == nullptr)) { hal.util->snprintf(failure_msg, failure_msg_len, "Rangefinder %d was not detected", i + 1); return false; } } return true; } RangeFinder *RangeFinder::_singleton; namespace AP { RangeFinder *rangefinder() { return RangeFinder::get_singleton(); } }