#include "Rover.h" #define AUTO_GUIDED_SEND_TARGET_MS 1000 bool ModeAuto::_enter() { // fail to enter auto if no mission commands if (mission.num_commands() <= 1) { gcs().send_text(MAV_SEVERITY_NOTICE, "No Mission. Can't set AUTO."); return false; } // initialise waypoint navigation library g2.wp_nav.init(); // other initialisation auto_triggered = false; // clear guided limits rover.mode_guided.limit_clear(); // initialise submode to stop or loiter if (rover.is_boat()) { if (!start_loiter()) { start_stop(); } } else { start_stop(); } // set flag to start mission waiting_to_start = true; return true; } void ModeAuto::_exit() { // stop running the mission if (mission.state() == AP_Mission::MISSION_RUNNING) { mission.stop(); } } void ModeAuto::update() { // check if mission exists (due to being cleared while disarmed in AUTO, // if no mission, then stop...needs mode change out of AUTO, mission load, // and change back to AUTO to run a mission at this point if (!hal.util->get_soft_armed() && mission.num_commands() <= 1) { start_stop(); } // start or update mission if (waiting_to_start) { // don't start the mission until we have an origin Location loc; if (ahrs.get_origin(loc)) { // start/resume the mission (based on MIS_RESTART parameter) mission.start_or_resume(); waiting_to_start = false; // initialise mission change check IGNORE_RETURN(mis_change_detector.check_for_mission_change()); } } else { // check for mission changes if (mis_change_detector.check_for_mission_change()) { // if mission is running restart the current command if it is a waypoint command if ((mission.state() == AP_Mission::MISSION_RUNNING) && (_submode == SubMode::WP)) { if (mission.restart_current_nav_cmd()) { gcs().send_text(MAV_SEVERITY_CRITICAL, "Auto mission changed, restarted command"); } else { // failed to restart mission for some reason gcs().send_text(MAV_SEVERITY_CRITICAL, "Auto mission changed but failed to restart command"); } } } mission.update(); } switch (_submode) { case SubMode::WP: { // boats loiter once the waypoint is reached bool keep_navigating = true; if (rover.is_boat() && g2.wp_nav.reached_destination() && !g2.wp_nav.is_fast_waypoint()) { keep_navigating = !start_loiter(); } // update navigation controller if (keep_navigating) { navigate_to_waypoint(); } break; } case SubMode::HeadingAndSpeed: { if (!_reached_heading) { // run steering and throttle controllers calc_steering_to_heading(_desired_yaw_cd); calc_throttle(calc_speed_nudge(_desired_speed, is_negative(_desired_speed)), true); // check if we have reached within 5 degrees of target _reached_heading = (fabsf(_desired_yaw_cd - ahrs.yaw_sensor) < 500); } else { // we have reached the destination so stay here if (rover.is_boat()) { if (!start_loiter()) { stop_vehicle(); } } else { stop_vehicle(); } } break; } case SubMode::RTL: rover.mode_rtl.update(); break; case SubMode::Loiter: rover.mode_loiter.update(); break; case SubMode::Guided: { // send location target to offboard navigation system send_guided_position_target(); rover.mode_guided.update(); break; } case SubMode::Stop: stop_vehicle(); break; case SubMode::NavScriptTime: rover.mode_guided.update(); break; case SubMode::Circle: rover.g2.mode_circle.update(); break; } } void ModeAuto::calc_throttle(float target_speed, bool avoidance_enabled) { // If not autostarting set the throttle to minimum if (!check_trigger()) { stop_vehicle(); return; } Mode::calc_throttle(target_speed, avoidance_enabled); } // return heading (in degrees) to target destination (aka waypoint) float ModeAuto::wp_bearing() const { switch (_submode) { case SubMode::WP: return g2.wp_nav.wp_bearing_cd() * 0.01f; case SubMode::HeadingAndSpeed: case SubMode::Stop: return 0.0f; case SubMode::RTL: return rover.mode_rtl.wp_bearing(); case SubMode::Loiter: return rover.mode_loiter.wp_bearing(); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.wp_bearing(); case SubMode::Circle: return rover.g2.mode_circle.wp_bearing(); } // this line should never be reached return 0.0f; } // return short-term target heading in degrees (i.e. target heading back to line between waypoints) float ModeAuto::nav_bearing() const { switch (_submode) { case SubMode::WP: return g2.wp_nav.nav_bearing_cd() * 0.01f; case SubMode::HeadingAndSpeed: case SubMode::Stop: return 0.0f; case SubMode::RTL: return rover.mode_rtl.nav_bearing(); case SubMode::Loiter: return rover.mode_loiter.nav_bearing(); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.nav_bearing(); case SubMode::Circle: return rover.g2.mode_circle.nav_bearing(); } // this line should never be reached return 0.0f; } // return cross track error (i.e. vehicle's distance from the line between waypoints) float ModeAuto::crosstrack_error() const { switch (_submode) { case SubMode::WP: return g2.wp_nav.crosstrack_error(); case SubMode::HeadingAndSpeed: case SubMode::Stop: return 0.0f; case SubMode::RTL: return rover.mode_rtl.crosstrack_error(); case SubMode::Loiter: return rover.mode_loiter.crosstrack_error(); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.crosstrack_error(); case SubMode::Circle: return rover.g2.mode_circle.crosstrack_error(); } // this line should never be reached return 0.0f; } // return desired lateral acceleration float ModeAuto::get_desired_lat_accel() const { switch (_submode) { case SubMode::WP: return g2.wp_nav.get_lat_accel(); case SubMode::HeadingAndSpeed: case SubMode::Stop: return 0.0f; case SubMode::RTL: return rover.mode_rtl.get_desired_lat_accel(); case SubMode::Loiter: return rover.mode_loiter.get_desired_lat_accel(); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.get_desired_lat_accel(); case SubMode::Circle: return rover.g2.mode_circle.get_desired_lat_accel(); } // this line should never be reached return 0.0f; } // return distance (in meters) to destination float ModeAuto::get_distance_to_destination() const { switch (_submode) { case SubMode::WP: return _distance_to_destination; case SubMode::HeadingAndSpeed: case SubMode::Stop: // no valid distance so return zero return 0.0f; case SubMode::RTL: return rover.mode_rtl.get_distance_to_destination(); case SubMode::Loiter: return rover.mode_loiter.get_distance_to_destination(); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.get_distance_to_destination(); case SubMode::Circle: return rover.g2.mode_circle.get_distance_to_destination(); } // this line should never be reached return 0.0f; } // get desired location bool ModeAuto::get_desired_location(Location& destination) const { switch (_submode) { case SubMode::WP: if (g2.wp_nav.is_destination_valid()) { destination = g2.wp_nav.get_oa_destination(); return true; } return false; case SubMode::HeadingAndSpeed: case SubMode::Stop: // no desired location for this submode return false; case SubMode::RTL: return rover.mode_rtl.get_desired_location(destination); case SubMode::Loiter: return rover.mode_loiter.get_desired_location(destination); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.get_desired_location(destination); case SubMode::Circle: return rover.g2.mode_circle.get_desired_location(destination); } // we should never reach here but just in case return false; } // set desired location to drive to bool ModeAuto::set_desired_location(const Location &destination, Location next_destination) { // call parent if (!Mode::set_desired_location(destination, next_destination)) { return false; } _submode = SubMode::WP; return true; } // return true if vehicle has reached or even passed destination bool ModeAuto::reached_destination() const { switch (_submode) { case SubMode::WP: return g2.wp_nav.reached_destination(); break; case SubMode::HeadingAndSpeed: case SubMode::Stop: // always return true because this is the safer option to allow missions to continue return true; break; case SubMode::RTL: return rover.mode_rtl.reached_destination(); break; case SubMode::Loiter: return rover.mode_loiter.reached_destination(); break; case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.reached_destination(); case SubMode::Circle: return rover.g2.mode_circle.reached_destination(); } // we should never reach here but just in case, return true to allow missions to continue return true; } // set desired speed in m/s bool ModeAuto::set_desired_speed(float speed) { switch (_submode) { case SubMode::WP: case SubMode::Stop: return g2.wp_nav.set_speed_max(speed); case SubMode::HeadingAndSpeed: _desired_speed = speed; return true; case SubMode::RTL: return rover.mode_rtl.set_desired_speed(speed); case SubMode::Loiter: return rover.mode_loiter.set_desired_speed(speed); case SubMode::Guided: case SubMode::NavScriptTime: return rover.mode_guided.set_desired_speed(speed); case SubMode::Circle: return rover.g2.mode_circle.set_desired_speed(speed); } return false; } // start RTL (within auto) void ModeAuto::start_RTL() { if (rover.mode_rtl.enter()) { _submode = SubMode::RTL; } } // lua scripts use this to retrieve the contents of the active command bool ModeAuto::nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2, int16_t &arg3, int16_t &arg4) { #if AP_SCRIPTING_ENABLED if (_submode == SubMode::NavScriptTime) { id = nav_scripting.id; cmd = nav_scripting.command; arg1 = nav_scripting.arg1; arg2 = nav_scripting.arg2; arg3 = nav_scripting.arg3; arg4 = nav_scripting.arg4; return true; } #endif return false; } // lua scripts use this to indicate when they have complete the command void ModeAuto::nav_script_time_done(uint16_t id) { #if AP_SCRIPTING_ENABLED if ((_submode == SubMode::NavScriptTime) && (id == nav_scripting.id)) { nav_scripting.done = true; } #endif } // check for triggering of start of auto mode bool ModeAuto::check_trigger(void) { // check for user pressing the auto trigger to off if (auto_triggered && g.auto_trigger_pin != -1 && rover.check_digital_pin(g.auto_trigger_pin) == 1) { gcs().send_text(MAV_SEVERITY_WARNING, "AUTO triggered off"); auto_triggered = false; return false; } // if already triggered, then return true, so you don't // need to hold the switch down if (auto_triggered) { return true; } // return true if auto trigger and kickstart are disabled if (g.auto_trigger_pin == -1 && is_zero(g.auto_kickstart)) { // no trigger configured - let's go! auto_triggered = true; return true; } // check if trigger pin has been pushed if (g.auto_trigger_pin != -1 && rover.check_digital_pin(g.auto_trigger_pin) == 0) { gcs().send_text(MAV_SEVERITY_WARNING, "Triggered AUTO with pin"); auto_triggered = true; return true; } // check if mission is started by giving vehicle a kick with acceleration > AUTO_KICKSTART if (!is_zero(g.auto_kickstart)) { const float xaccel = rover.ins.get_accel().x; if (xaccel >= g.auto_kickstart) { gcs().send_text(MAV_SEVERITY_WARNING, "Triggered AUTO xaccel=%.1f", static_cast(xaccel)); auto_triggered = true; return true; } } return false; } bool ModeAuto::start_loiter() { if (rover.mode_loiter.enter()) { _submode = SubMode::Loiter; return true; } return false; } // hand over control to external navigation controller in AUTO mode void ModeAuto::start_guided(const Location& loc) { if (rover.mode_guided.enter()) { _submode = SubMode::Guided; // initialise guided start time and position as reference for limit checking rover.mode_guided.limit_init_time_and_location(); // sanity check target location if ((loc.lat != 0) || (loc.lng != 0)) { guided_target.loc = loc; guided_target.loc.sanitize(rover.current_loc); guided_target.valid = true; } else { guided_target.valid = false; } } } // start stopping vehicle as quickly as possible void ModeAuto::start_stop() { _submode = SubMode::Stop; } // send latest position target to offboard navigation system void ModeAuto::send_guided_position_target() { if (!guided_target.valid) { return; } // send at maximum of 1hz const uint32_t now_ms = AP_HAL::millis(); if ((guided_target.last_sent_ms == 0) || (now_ms - guided_target.last_sent_ms > AUTO_GUIDED_SEND_TARGET_MS)) { guided_target.last_sent_ms = now_ms; // get system id and component id of offboard navigation system uint8_t sysid; uint8_t compid; mavlink_channel_t chan; if (GCS_MAVLINK::find_by_mavtype(MAV_TYPE_ONBOARD_CONTROLLER, sysid, compid, chan)) { gcs().chan(chan-MAVLINK_COMM_0)->send_set_position_target_global_int(sysid, compid, guided_target.loc); } } } /********************************************************************************/ // Command Event Handlers /********************************************************************************/ bool ModeAuto::start_command(const AP_Mission::Mission_Command& cmd) { // log when new commands start if (rover.should_log(MASK_LOG_CMD)) { rover.logger.Write_Mission_Cmd(mission, cmd); } switch (cmd.id) { case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint return do_nav_wp(cmd, false); case MAV_CMD_NAV_RETURN_TO_LAUNCH: do_RTL(); break; case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely case MAV_CMD_NAV_LOITER_TIME: // Loiter for specified time return do_nav_wp(cmd, true); case MAV_CMD_NAV_LOITER_TURNS: return do_circle(cmd); case MAV_CMD_NAV_GUIDED_ENABLE: // accept navigation commands from external nav computer do_nav_guided_enable(cmd); break; case MAV_CMD_NAV_SET_YAW_SPEED: do_nav_set_yaw_speed(cmd); break; case MAV_CMD_NAV_DELAY: // 93 Delay the next navigation command do_nav_delay(cmd); break; #if AP_SCRIPTING_ENABLED case MAV_CMD_NAV_SCRIPT_TIME: do_nav_script_time(cmd); break; #endif // Conditional commands case MAV_CMD_CONDITION_DELAY: do_wait_delay(cmd); break; case MAV_CMD_CONDITION_DISTANCE: do_within_distance(cmd); break; // Do commands case MAV_CMD_DO_CHANGE_SPEED: do_change_speed(cmd); break; case MAV_CMD_DO_SET_HOME: do_set_home(cmd); break; #if HAL_MOUNT_ENABLED // Sets the region of interest (ROI) for a sensor set or the // vehicle itself. This can then be used by the vehicles control // system to control the vehicle attitude and the attitude of various // devices such as cameras. // |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| case MAV_CMD_DO_SET_ROI: if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { // switch off the camera tracking if enabled if (rover.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { rover.camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount rover.camera_mount.set_roi_target(cmd.content.location); } break; #endif case MAV_CMD_DO_SET_REVERSE: do_set_reverse(cmd); break; case MAV_CMD_DO_FENCE_ENABLE: #if AP_FENCE_ENABLED if (cmd.p1 == 0) { //disable rover.fence.enable(false); gcs().send_text(MAV_SEVERITY_INFO, "Fence Disabled"); } else { //enable fence rover.fence.enable(true); gcs().send_text(MAV_SEVERITY_INFO, "Fence Enabled"); } #endif break; case MAV_CMD_DO_GUIDED_LIMITS: do_guided_limits(cmd); break; default: // return false for unhandled commands return false; } // if we got this far we must have been successful return true; } // exit_mission - callback function called from ap-mission when the mission has completed void ModeAuto::exit_mission() { // play a tone AP_Notify::events.mission_complete = 1; // send message gcs().send_text(MAV_SEVERITY_NOTICE, "Mission Complete"); if (g2.mis_done_behave == MIS_DONE_BEHAVE_LOITER && start_loiter()) { return; } if (g2.mis_done_behave == MIS_DONE_BEHAVE_ACRO && rover.set_mode(rover.mode_acro, ModeReason::MISSION_END)) { return; } if (g2.mis_done_behave == MIS_DONE_BEHAVE_MANUAL && rover.set_mode(rover.mode_manual, ModeReason::MISSION_END)) { return; } start_stop(); } // verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run // we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode bool ModeAuto::verify_command_callback(const AP_Mission::Mission_Command& cmd) { const bool cmd_complete = verify_command(cmd); // send message to GCS if (cmd_complete) { gcs().send_mission_item_reached_message(cmd.index); } return cmd_complete; } /******************************************************************************* Verify command Handlers Each type of mission element has a "verify" operation. The verify operation returns true when the mission element has completed and we should move onto the next mission element. Return true if we do not recognize the command so that we move on to the next command *******************************************************************************/ bool ModeAuto::verify_command(const AP_Mission::Mission_Command& cmd) { switch (cmd.id) { case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(cmd); case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlimited(cmd); case MAV_CMD_NAV_LOITER_TURNS: return verify_circle(cmd); case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(cmd); case MAV_CMD_NAV_GUIDED_ENABLE: return verify_nav_guided_enable(cmd); case MAV_CMD_NAV_DELAY: return verify_nav_delay(cmd); #if AP_SCRIPTING_ENABLED case MAV_CMD_NAV_SCRIPT_TIME: return verify_nav_script_time(); #endif case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); case MAV_CMD_NAV_SET_YAW_SPEED: return verify_nav_set_yaw_speed(); // do commands (always return true) case MAV_CMD_DO_CHANGE_SPEED: case MAV_CMD_DO_SET_HOME: case MAV_CMD_DO_SET_CAM_TRIGG_DIST: case MAV_CMD_DO_SET_ROI: case MAV_CMD_DO_SET_REVERSE: case MAV_CMD_DO_FENCE_ENABLE: case MAV_CMD_DO_GUIDED_LIMITS: return true; default: // error message gcs().send_text(MAV_SEVERITY_WARNING, "Skipping invalid cmd #%i", cmd.id); // return true if we do not recognize the command so that we move on to the next command return true; } } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ void ModeAuto::do_RTL(void) { // start rtl in auto mode start_RTL(); } bool ModeAuto::do_nav_wp(const AP_Mission::Mission_Command& cmd, bool always_stop_at_destination) { // retrieve and sanitize target location Location cmdloc = cmd.content.location; cmdloc.sanitize(rover.current_loc); // delayed stored in p1 in seconds loiter_duration = ((int16_t) cmd.p1 < 0) ? 0 : cmd.p1; loiter_start_time = 0; if (loiter_duration > 0) { always_stop_at_destination = true; } // do not add next wp if there are no more navigation commands AP_Mission::Mission_Command next_cmd; if (always_stop_at_destination || !mission.get_next_nav_cmd(cmd.index+1, next_cmd)) { // single destination if (!set_desired_location(cmdloc)) { return false; } } else { // retrieve and sanitize next destination location Location next_cmdloc = next_cmd.content.location; next_cmdloc.sanitize(cmdloc); if (!set_desired_location(cmdloc, next_cmdloc)) { return false; } } // just starting so we haven't previously reached the waypoint previously_reached_wp = false; return true; } // do_nav_delay - Delay the next navigation command void ModeAuto::do_nav_delay(const AP_Mission::Mission_Command& cmd) { nav_delay_time_start_ms = millis(); // boats loiter, cars and balancebots stop if (rover.is_boat()) { if (!start_loiter()) { start_stop(); } } else { start_stop(); } if (cmd.content.nav_delay.seconds > 0) { // relative delay nav_delay_time_max_ms = cmd.content.nav_delay.seconds * 1000; // convert seconds to milliseconds } else { // absolute delay to utc time #if AP_RTC_ENABLED nav_delay_time_max_ms = AP::rtc().get_time_utc(cmd.content.nav_delay.hour_utc, cmd.content.nav_delay.min_utc, cmd.content.nav_delay.sec_utc, 0); #else nav_delay_time_max_ms = 0; #endif } gcs().send_text(MAV_SEVERITY_INFO, "Delaying %u sec", (unsigned)(nav_delay_time_max_ms/1000)); } // start guided within auto to allow external navigation system to control vehicle void ModeAuto::do_nav_guided_enable(const AP_Mission::Mission_Command& cmd) { if (cmd.p1 > 0) { start_guided(cmd.content.location); } } // do_set_yaw_speed - turn to a specified heading and achieve a given speed void ModeAuto::do_nav_set_yaw_speed(const AP_Mission::Mission_Command& cmd) { float desired_heading_cd; // get final angle, 1 = Relative, 0 = Absolute if (cmd.content.set_yaw_speed.relative_angle > 0) { // relative angle desired_heading_cd = wrap_180_cd(ahrs.yaw_sensor + cmd.content.set_yaw_speed.angle_deg * 100.0f); } else { // absolute angle desired_heading_cd = cmd.content.set_yaw_speed.angle_deg * 100.0f; } // set targets const float speed_max = g2.wp_nav.get_default_speed(); _desired_speed = constrain_float(cmd.content.set_yaw_speed.speed, -speed_max, speed_max); _desired_yaw_cd = desired_heading_cd; _reached_heading = false; _submode = SubMode::HeadingAndSpeed; } /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ bool ModeAuto::verify_nav_wp(const AP_Mission::Mission_Command& cmd) { // exit immediately if we haven't reached the destination if (!reached_destination()) { return false; } // Check if this is the first time we have noticed reaching the waypoint if (!previously_reached_wp) { previously_reached_wp = true; // check if we are loitering at this waypoint - the message sent to the GCS is different if (loiter_duration > 0) { // send message including loiter time gcs().send_text(MAV_SEVERITY_INFO, "Reached waypoint #%u. Loiter for %u seconds", (unsigned int)cmd.index, (unsigned int)loiter_duration); // record the current time i.e. start timer loiter_start_time = millis(); } else { // send simpler message to GCS gcs().send_text(MAV_SEVERITY_INFO, "Reached waypoint #%u", (unsigned int)cmd.index); } } // Check if we have loitered long enough if (loiter_duration == 0) { return true; } else { return (((millis() - loiter_start_time) / 1000) >= loiter_duration); } } // verify_nav_delay - check if we have waited long enough bool ModeAuto::verify_nav_delay(const AP_Mission::Mission_Command& cmd) { if (millis() - nav_delay_time_start_ms > nav_delay_time_max_ms) { nav_delay_time_max_ms = 0; return true; } return false; } bool ModeAuto::verify_RTL() const { return reached_destination(); } bool ModeAuto::verify_loiter_unlimited(const AP_Mission::Mission_Command& cmd) { verify_nav_wp(cmd); return false; } // verify_loiter_time - check if we have loitered long enough bool ModeAuto::verify_loiter_time(const AP_Mission::Mission_Command& cmd) { const bool result = verify_nav_wp(cmd); if (result) { gcs().send_text(MAV_SEVERITY_WARNING, "Finished active loiter"); } return result; } // check if guided has completed bool ModeAuto::verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd) { // if we failed to enter guided or this command disables guided // return true so we move to next command if (_submode != SubMode::Guided || cmd.p1 == 0) { return true; } // if a location target was set, return true once vehicle is close if (guided_target.valid) { if (rover.current_loc.get_distance(guided_target.loc) <= rover.g2.wp_nav.get_radius()) { return true; } } // guided command complete once a limit is breached return rover.mode_guided.limit_breached(); } // verify_yaw - return true if we have reached the desired heading bool ModeAuto::verify_nav_set_yaw_speed() { if (_submode == SubMode::HeadingAndSpeed) { return _reached_heading; } // we should never reach here but just in case, return true to allow missions to continue return true; } bool ModeAuto::do_circle(const AP_Mission::Mission_Command& cmd) { // retrieve and sanitize target location Location circle_center = cmd.content.location; circle_center.sanitize(rover.current_loc); // calculate radius uint16_t circle_radius_m = HIGHBYTE(cmd.p1); // circle radius held in high byte of p1 if (cmd.id == MAV_CMD_NAV_LOITER_TURNS && cmd.type_specific_bits & (1U << 0)) { // special storage handling allows for larger radii circle_radius_m *= 10; } // initialise circle mode if (g2.mode_circle.set_center(circle_center, circle_radius_m, cmd.content.location.loiter_ccw)) { _submode = SubMode::Circle; return true; } return false; } bool ModeAuto::verify_circle(const AP_Mission::Mission_Command& cmd) { // check if we have completed circling return ((g2.mode_circle.get_angle_total_rad() / M_2PI) >= LOWBYTE(cmd.p1)); } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ void ModeAuto::do_wait_delay(const AP_Mission::Mission_Command& cmd) { condition_start = millis(); condition_value = static_cast(cmd.content.delay.seconds * 1000); // convert seconds to milliseconds } void ModeAuto::do_within_distance(const AP_Mission::Mission_Command& cmd) { condition_value = cmd.content.distance.meters; } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ bool ModeAuto::verify_wait_delay() { if (static_cast(millis() - condition_start) > static_cast(condition_value)) { condition_value = 0; return true; } return false; } bool ModeAuto::verify_within_distance() { if (get_distance_to_destination() < condition_value) { condition_value = 0; return true; } return false; } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ void ModeAuto::do_change_speed(const AP_Mission::Mission_Command& cmd) { // set speed for active mode if (set_desired_speed(cmd.content.speed.target_ms)) { gcs().send_text(MAV_SEVERITY_INFO, "speed: %.1f m/s", static_cast(cmd.content.speed.target_ms)); } } void ModeAuto::do_set_home(const AP_Mission::Mission_Command& cmd) { if (cmd.p1 == 1 && rover.have_position) { if (!rover.set_home_to_current_location(false)) { // ignored... } } else { if (!rover.set_home(cmd.content.location, false)) { // ignored... } } } void ModeAuto::do_set_reverse(const AP_Mission::Mission_Command& cmd) { set_reversed(cmd.p1 == 1); } // set timeout and position limits for guided within auto void ModeAuto::do_guided_limits(const AP_Mission::Mission_Command& cmd) { rover.mode_guided.limit_set( cmd.p1 * 1000, // convert seconds to ms cmd.content.guided_limits.horiz_max); } #if AP_SCRIPTING_ENABLED // start accepting position, velocity and acceleration targets from lua scripts void ModeAuto::do_nav_script_time(const AP_Mission::Mission_Command& cmd) { // call regular guided flight mode initialisation if (rover.mode_guided.enter()) { _submode = SubMode::NavScriptTime; nav_scripting.done = false; nav_scripting.id++; nav_scripting.start_ms = millis(); nav_scripting.command = cmd.content.nav_script_time.command; nav_scripting.timeout_s = cmd.content.nav_script_time.timeout_s; nav_scripting.arg1 = cmd.content.nav_script_time.arg1.get(); nav_scripting.arg2 = cmd.content.nav_script_time.arg2.get(); nav_scripting.arg3 = cmd.content.nav_script_time.arg3; nav_scripting.arg4 = cmd.content.nav_script_time.arg4; } else { // for safety we set nav_scripting to done to protect against the mission getting stuck nav_scripting.done = true; } } // check if verify_nav_script_time command has completed bool ModeAuto::verify_nav_script_time() { // if done or timeout then return true if (nav_scripting.done || ((nav_scripting.timeout_s > 0) && (AP_HAL::millis() - nav_scripting.start_ms) > (nav_scripting.timeout_s * 1000))) { return true; } return false; } #endif