/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main logic for servo control */ #include "Plane.h" #include /***************************************** * Throttle slew limit *****************************************/ void Plane::throttle_slew_limit(SRV_Channel::Aux_servo_function_t func) { #if HAL_QUADPLANE_ENABLED const bool do_throttle_slew = (control_mode->does_auto_throttle() || quadplane.in_assisted_flight() || quadplane.in_vtol_mode()); #else const bool do_throttle_slew = control_mode->does_auto_throttle(); #endif if (!do_throttle_slew) { // only do throttle slew limiting in modes where throttle control is automatic SRV_Channels::set_slew_rate(func, 0.0, 100, G_Dt); return; } uint8_t slewrate = aparm.throttle_slewrate; if (control_mode == &mode_auto) { if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) { slewrate = g.takeoff_throttle_slewrate; } else if (landing.get_throttle_slewrate() != 0 && flight_stage == AP_FixedWing::FlightStage::LAND) { slewrate = landing.get_throttle_slewrate(); } } if (g.takeoff_throttle_slewrate != 0 && (flight_stage == AP_FixedWing::FlightStage::TAKEOFF || flight_stage == AP_FixedWing::FlightStage::VTOL)) { // for VTOL we use takeoff slewrate, which helps with transition slewrate = g.takeoff_throttle_slewrate; } #if HAL_QUADPLANE_ENABLED if (g.takeoff_throttle_slewrate != 0 && quadplane.in_transition()) { slewrate = g.takeoff_throttle_slewrate; } #endif SRV_Channels::set_slew_rate(func, slewrate, 100, G_Dt); } /* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. Disable throttle if following conditions are met: * 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher * AND * 2 - Our reported altitude is within 10 meters of the home altitude. * 3 - Our reported speed is under 5 meters per second. * 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached * OR * 5 - Home location is not set * OR * 6- Landing does not want to allow throttle */ bool Plane::suppress_throttle(void) { #if PARACHUTE == ENABLED if (control_mode->does_auto_throttle() && parachute.release_initiated()) { // throttle always suppressed in auto-throttle modes after parachute release initiated throttle_suppressed = true; return true; } #endif if (landing.is_throttle_suppressed()) { return true; } if (!throttle_suppressed) { // we've previously met a condition for unsupressing the throttle return false; } if (!control_mode->does_auto_throttle()) { // the user controls the throttle throttle_suppressed = false; return false; } bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5); if ((control_mode == &mode_auto && auto_state.takeoff_complete == false) || control_mode == &mode_takeoff) { uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000; if (is_flying() && millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch gps_movement) { // definite gps movement // we're already flying, do not suppress the throttle. We can get // stuck in this condition if we reset a mission and cmd 1 is takeoff // but we're currently flying around below the takeoff altitude throttle_suppressed = false; return false; } if (auto_takeoff_check()) { // we're in auto takeoff throttle_suppressed = false; auto_state.baro_takeoff_alt = barometer.get_altitude(); return false; } // keep throttle suppressed return true; } if (fabsf(relative_altitude) >= 10.0f) { // we're more than 10m from the home altitude throttle_suppressed = false; return false; } if (gps_movement) { // if we have an airspeed sensor, then check it too, and // require 5m/s. This prevents throttle up due to spiky GPS // groundspeed with bad GPS reception #if AP_AIRSPEED_ENABLED if ((!ahrs.using_airspeed_sensor()) || airspeed.get_airspeed() >= 5) { // we're moving at more than 5 m/s throttle_suppressed = false; return false; } #else // no airspeed sensor, so we trust that the GPS's movement is truthful throttle_suppressed = false; return false; #endif } #if HAL_QUADPLANE_ENABLED if (quadplane.is_flying()) { throttle_suppressed = false; return false; } #endif // throttle remains suppressed return true; } /* mixer for elevon and vtail channels setup using designated servo function values. This mixer operates purely on scaled values, allowing the user to trim and limit individual servos using the SERVOn_* parameters */ void Plane::channel_function_mixer(SRV_Channel::Aux_servo_function_t func1_in, SRV_Channel::Aux_servo_function_t func2_in, SRV_Channel::Aux_servo_function_t func1_out, SRV_Channel::Aux_servo_function_t func2_out) const { // the order is setup so that non-reversed servos go "up", and // func1 is the "left" channel. Users can adjust with channel // reversal as needed float in1 = SRV_Channels::get_output_scaled(func1_in); float in2 = SRV_Channels::get_output_scaled(func2_in); // apply MIXING_OFFSET to input channels if (g.mixing_offset < 0) { in2 *= (100 - g.mixing_offset) * 0.01; } else if (g.mixing_offset > 0) { in1 *= (100 + g.mixing_offset) * 0.01; } float out1 = constrain_float((in2 - in1) * g.mixing_gain, -4500, 4500); float out2 = constrain_float((in2 + in1) * g.mixing_gain, -4500, 4500); SRV_Channels::set_output_scaled(func1_out, out1); SRV_Channels::set_output_scaled(func2_out, out2); } /* setup flaperon output channels */ void Plane::flaperon_update() { /* flaperons are implemented as a mixer between aileron and a percentage of flaps. Flap input can come from a manual channel or from auto flaps. */ float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); float flap_percent = SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto); float flaperon_left = constrain_float(aileron + flap_percent * 45, -4500, 4500); float flaperon_right = constrain_float(aileron - flap_percent * 45, -4500, 4500); SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_left, flaperon_left); SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_right, flaperon_right); } /* setup differential spoiler output channels Differential spoilers are a type of elevon that is split on each wing to give yaw control, mixed from rudder */ void Plane::dspoiler_update(void) { const int8_t bitmask = g2.crow_flap_options.get(); const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0; const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0; //progressive crow when option is set or RC switch is set to progressive const bool progressive_crow = (bitmask & CrowFlapOptions::PROGRESSIVE_CROW) != 0 || crow_mode == CrowMode::PROGRESSIVE; // if flying wing use elevons else use ailerons float elevon_left; float elevon_right; if (flying_wing) { elevon_left = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left); elevon_right = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right); } else { const float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); elevon_left = -aileron; elevon_right = aileron; } const float rudder_rate = g.dspoiler_rud_rate * 0.01f; const float rudder = SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) * rudder_rate; float dspoiler_outer_left = elevon_left; float dspoiler_outer_right = elevon_right; float dspoiler_inner_left = 0; float dspoiler_inner_right = 0; // full span ailerons / elevons if (full_span_aileron) { dspoiler_inner_left = elevon_left; dspoiler_inner_right = elevon_right; } if (rudder > 0) { // apply rudder to right wing dspoiler_outer_right = constrain_float(dspoiler_outer_right + rudder, -4500, 4500); dspoiler_inner_right = constrain_float(dspoiler_inner_right - rudder, -4500, 4500); } else { // apply rudder to left wing dspoiler_outer_left = constrain_float(dspoiler_outer_left - rudder, -4500, 4500); dspoiler_inner_left = constrain_float(dspoiler_inner_left + rudder, -4500, 4500); } // limit flap throw used for aileron const int8_t aileron_matching = g2.crow_flap_aileron_matching.get(); if (aileron_matching < 100) { // only do matching if it will make a difference const float aileron_matching_scaled = aileron_matching * 0.01; if (is_negative(dspoiler_inner_left)) { dspoiler_inner_left *= aileron_matching_scaled; } if (is_negative(dspoiler_inner_right)) { dspoiler_inner_right *= aileron_matching_scaled; } } int16_t weight_outer = g2.crow_flap_weight_outer.get(); if (crow_mode == Plane::CrowMode::CROW_DISABLED) { //override totally aileron crow if crow RC switch set to disabled weight_outer = 0; } const int16_t weight_inner = g2.crow_flap_weight_inner.get(); if (weight_outer > 0 || weight_inner > 0) { /* apply crow flaps by apply the same split of the differential spoilers to both wings. Get flap percentage from k_flap_auto, which is set in set_servos_flaps() as the maximum of manual and auto flap control */ const float flap_percent = SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto); if (is_positive(flap_percent)) { float inner_flap_scaled = flap_percent; float outer_flap_scaled = flap_percent; if (progressive_crow) { // apply 0 - full inner from 0 to 50% flap then add in outer above 50% inner_flap_scaled = constrain_float(inner_flap_scaled * 2, 0,100); outer_flap_scaled = constrain_float(outer_flap_scaled - 50, 0,50) * 2; } // scale flaps so when weights are 100 they give full up or down dspoiler_outer_left = constrain_float(dspoiler_outer_left + outer_flap_scaled * weight_outer * 0.45, -4500, 4500); dspoiler_inner_left = constrain_float(dspoiler_inner_left - inner_flap_scaled * weight_inner * 0.45, -4500, 4500); dspoiler_outer_right = constrain_float(dspoiler_outer_right + outer_flap_scaled * weight_outer * 0.45, -4500, 4500); dspoiler_inner_right = constrain_float(dspoiler_inner_right - inner_flap_scaled * weight_inner * 0.45, -4500, 4500); } } SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left); SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left); SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right); SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right); } /* set airbrakes based on reverse thrust and/or manual input RC channel */ void Plane::airbrake_update(void) { // Calculate any manual airbrake input from RC channel option. float manual_airbrake_percent = 0; if (channel_airbrake != nullptr && !failsafe.rc_failsafe && failsafe.throttle_counter == 0) { manual_airbrake_percent = channel_airbrake->percent_input(); } // Calculate auto airbrake from negative throttle. float throttle_min = aparm.throttle_min.get(); float airbrake_pc = 0; float throttle_pc = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); if (throttle_min < 0) { if (landing.is_flaring()) { // Full airbrakes during the flare. airbrake_pc = 100; } else { // Determine fraction between zero and full negative throttle. airbrake_pc = constrain_float(-throttle_pc, 0, 100); } } // Manual overrides auto airbrake setting. if (airbrake_pc < manual_airbrake_percent) { airbrake_pc = manual_airbrake_percent; } // Output to airbrake servo types. SRV_Channels::set_output_scaled(SRV_Channel::k_airbrake, airbrake_pc); } /* setup servos for idle mode Idle mode is used during balloon launch to keep servos still, apart from occasional wiggle to prevent freezing up */ void Plane::set_servos_idle(void) { int16_t servo_value; // move over full range for 2 seconds if (auto_state.idle_wiggle_stage != 0) { auto_state.idle_wiggle_stage += 2; } if (auto_state.idle_wiggle_stage == 0) { servo_value = 0; } else if (auto_state.idle_wiggle_stage < 50) { servo_value = auto_state.idle_wiggle_stage * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 100) { servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 150) { servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 200) { servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50); } else { auto_state.idle_wiggle_stage = 0; servo_value = 0; } SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, servo_value); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, servo_value); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, servo_value); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0.0); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0.0); SRV_Channels::set_output_to_trim(SRV_Channel::k_throttle); SRV_Channels::set_output_to_trim(SRV_Channel::k_throttleLeft); SRV_Channels::set_output_to_trim(SRV_Channel::k_throttleRight); } /* Calculate the throttle scale to compensate for battery voltage drop */ void ParametersG2::FWD_BATT_CMP::update() { // Assume disabled enabled = false; // return if not enabled, or setup incorrectly if (!is_positive(batt_voltage_min) || batt_voltage_min >= batt_voltage_max) { return; } float batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(batt_idx); // Return for a very low battery if (batt_voltage_resting_estimate < 0.25f * batt_voltage_min) { return; } // constrain read voltage to min and max params batt_voltage_resting_estimate = constrain_float(batt_voltage_resting_estimate, batt_voltage_min, batt_voltage_max); // don't apply compensation if the voltage is excessively low if (batt_voltage_resting_estimate < 1) { return; } // Scale the throttle up to compensate for voltage drop // Ratio = 1 when voltage = voltage max, ratio increases as voltage drops ratio = batt_voltage_max / batt_voltage_resting_estimate; // Got this far then ratio is valid enabled = true; } // Apply throttle scale to min and max limits void ParametersG2::FWD_BATT_CMP::apply_min_max(int8_t &min_throttle, int8_t &max_throttle) const { // return if not enabled if (!enabled) { return; } // Scale the throttle limits to prevent subsequent clipping // Ratio will always be >= 1, ensure still within max limits min_throttle = int8_t(MAX((ratio * (float)min_throttle), -100)); max_throttle = int8_t(MIN((ratio * (float)max_throttle), 100)); } // Apply throttle scale to throttle demand float ParametersG2::FWD_BATT_CMP::apply_throttle(float throttle) const { // return if not enabled if (!enabled) { return throttle; } // Ratio will always be >= 1, ensure still within max limits return constrain_float(throttle * ratio, -100, 100); } /* calculate any throttle limits based on the watt limiter */ #if AP_BATTERY_WATT_MAX_ENABLED void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle) { uint32_t now = millis(); if (battery.overpower_detected()) { // overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value // throttle limit will attack by 10% per second if (is_positive(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) && // demanding too much positive thrust throttle_watt_limit_max < max_throttle - 25 && now - throttle_watt_limit_timer_ms >= 1) { // always allow for 25% throttle available regardless of battery status throttle_watt_limit_timer_ms = now; throttle_watt_limit_max++; } else if (is_negative(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) && min_throttle < 0 && // reverse thrust is available throttle_watt_limit_min < -(min_throttle) - 25 && now - throttle_watt_limit_timer_ms >= 1) { // always allow for 25% throttle available regardless of battery status throttle_watt_limit_timer_ms = now; throttle_watt_limit_min++; } } else if (now - throttle_watt_limit_timer_ms >= 1000) { // it has been 1 second since last over-current, check if we can resume higher throttle. // this throttle release is needed to allow raising the max_throttle as the battery voltage drains down // throttle limit will release by 1% per second if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > throttle_watt_limit_max && // demanding max forward thrust throttle_watt_limit_max > 0) { // and we're currently limiting it throttle_watt_limit_timer_ms = now; throttle_watt_limit_max--; } else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < throttle_watt_limit_min && // demanding max negative thrust throttle_watt_limit_min > 0) { // and we're limiting it throttle_watt_limit_timer_ms = now; throttle_watt_limit_min--; } } max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max); if (min_throttle < 0) { min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0); } } #endif // #if AP_BATTERY_WATT_MAX_ENABLED /* setup output channels all non-manual modes */ void Plane::set_throttle(void) { // convert 0 to 100% (or -100 to +100) into PWM int8_t min_throttle = aparm.throttle_min.get(); int8_t max_throttle = aparm.throttle_max.get(); #if AP_ICENGINE_ENABLED // apply idle governor g2.ice_control.update_idle_governor(min_throttle); #endif if (min_throttle < 0 && !allow_reverse_thrust()) { // reverse thrust is available but inhibited. min_throttle = 0; } const bool use_takeoff_throttle_max = #if HAL_QUADPLANE_ENABLED quadplane.in_transition() || #endif (flight_stage == AP_FixedWing::FlightStage::TAKEOFF) || (flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING); if (use_takeoff_throttle_max) { if (aparm.takeoff_throttle_max != 0) { max_throttle = aparm.takeoff_throttle_max.get(); } } else if (landing.is_flaring()) { min_throttle = 0; } // compensate for battery voltage drop g2.fwd_batt_cmp.update(); g2.fwd_batt_cmp.apply_min_max(min_throttle, max_throttle); #if AP_BATTERY_WATT_MAX_ENABLED // apply watt limiter throttle_watt_limiter(min_throttle, max_throttle); #endif if (!arming.is_armed_and_safety_off()) { // Always set 0 scaled even if overriding to zero pwm. // This ensures slew limits and other functions using the scaled value pick up in the correct place SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0.0); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0.0); if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::Limit::ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM); } } else if (suppress_throttle()) { if (g.throttle_suppress_manual) { // manual pass through of throttle while throttle is suppressed SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true)); } else if (landing.is_flaring() && landing.use_thr_min_during_flare() ) { // throttle is suppressed (above) to zero in final flare in auto mode, but we allow instead thr_min if user prefers, eg turbines: SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, aparm.throttle_min.get()); } else { // default SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0); } #if AP_SCRIPTING_ENABLED } else if (nav_scripting_active()) { SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.nav_scripting.throttle_pct); #endif } else if (control_mode == &mode_stabilize || control_mode == &mode_training || control_mode == &mode_acro || control_mode == &mode_fbwa || control_mode == &mode_autotune) { // a manual throttle mode if (g.throttle_passthru_stabilize) { // manual pass through of throttle while in FBWA or // STABILIZE mode with THR_PASS_STAB set SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true)); } else { // get throttle, but adjust center to output TRIM_THROTTLE if flight option set SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(get_adjusted_throttle_input(true), min_throttle, max_throttle)); } } else if (control_mode->is_guided_mode() && guided_throttle_passthru) { // manual pass through of throttle while in GUIDED SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true)); #if HAL_QUADPLANE_ENABLED } else if (quadplane.in_vtol_mode()) { float fwd_thr = 0; // if armed and not spooled down ask quadplane code for forward throttle if (quadplane.motors->armed() && quadplane.motors->get_desired_spool_state() != AP_Motors::DesiredSpoolState::SHUT_DOWN) { fwd_thr = constrain_float(quadplane.forward_throttle_pct(), min_throttle, max_throttle); } SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, fwd_thr); #endif // HAL_QUADPLANE_ENABLED } else { // Apply min/max limits and voltage compensation to throttle output from flight mode const float throttle = g2.fwd_batt_cmp.apply_throttle(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_float(throttle, min_throttle, max_throttle)); } } /* Warn AHRS that we might take off soon */ void Plane::set_takeoff_expected(void) { // let EKF know to start GSF yaw estimator before takeoff movement starts so that yaw angle is better estimated const float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); if (!is_flying() && arming.is_armed()) { // Check if rate of change of velocity along X axis exceeds 1-g which normally indicates a throw. // Tests with hand carriage of micro UAS indicates that a 1-g threshold does not false trigger prior // to the throw, but there is margin to increase this threshold if false triggering becomes problematic. const float accel_x_due_to_gravity = GRAVITY_MSS * ahrs.sin_pitch(); const float accel_x_due_to_throw = ahrs.get_accel().x - accel_x_due_to_gravity; bool throw_detected = accel_x_due_to_throw > GRAVITY_MSS; bool throttle_up_detected = throttle > aparm.throttle_cruise; if (throw_detected || throttle_up_detected) { plane.ahrs.set_takeoff_expected(true); } } } /* setup flap outputs */ void Plane::set_servos_flaps(void) { // Auto flap deployment int8_t auto_flap_percent = 0; int8_t manual_flap_percent = 0; // work out any manual flap input if (channel_flap != nullptr && rc().has_valid_input()) { manual_flap_percent = channel_flap->percent_input(); } if (control_mode->does_auto_throttle()) { int16_t flapSpeedSource = 0; if (ahrs.using_airspeed_sensor()) { flapSpeedSource = target_airspeed_cm * 0.01f; } else { flapSpeedSource = aparm.throttle_cruise; } if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) { auto_flap_percent = g.flap_2_percent; } else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) { auto_flap_percent = g.flap_1_percent; } //else flaps stay at default zero deflection #if HAL_SOARING_ENABLED if (control_mode == &mode_thermal) { auto_flap_percent = g2.soaring_controller.get_thermalling_flap(); } #endif /* special flap levels for takeoff and landing. This works better than speed based flaps as it leads to less possibility of oscillation */ switch (flight_stage) { case AP_FixedWing::FlightStage::TAKEOFF: case AP_FixedWing::FlightStage::ABORT_LANDING: if (g.takeoff_flap_percent != 0) { auto_flap_percent = g.takeoff_flap_percent; } break; case AP_FixedWing::FlightStage::NORMAL: if (g.takeoff_flap_percent != 0 && in_preLaunch_flight_stage()) { // TODO: move this to a new FLIGHT_PRE_TAKEOFF stage auto_flap_percent = g.takeoff_flap_percent; } break; case AP_FixedWing::FlightStage::LAND: if (landing.get_flap_percent() != 0) { auto_flap_percent = landing.get_flap_percent(); } break; default: break; } } // manual flap input overrides auto flap input if (abs(manual_flap_percent) > auto_flap_percent) { auto_flap_percent = manual_flap_percent; } SRV_Channels::set_output_scaled(SRV_Channel::k_flap_auto, auto_flap_percent); SRV_Channels::set_output_scaled(SRV_Channel::k_flap, manual_flap_percent); SRV_Channels::set_slew_rate(SRV_Channel::k_flap_auto, g.flap_slewrate, 100, G_Dt); SRV_Channels::set_slew_rate(SRV_Channel::k_flap, g.flap_slewrate, 100, G_Dt); // output to flaperons, if any flaperon_update(); } #if AP_LANDINGGEAR_ENABLED /* setup landing gear state */ void Plane::set_landing_gear(void) { if (control_mode == &mode_auto && arming.is_armed_and_safety_off() && is_flying() && gear.last_flight_stage != flight_stage) { switch (flight_stage) { case AP_FixedWing::FlightStage::LAND: g2.landing_gear.deploy_for_landing(); break; case AP_FixedWing::FlightStage::NORMAL: g2.landing_gear.retract_after_takeoff(); break; default: break; } } gear.last_flight_stage = flight_stage; } #endif // AP_LANDINGGEAR_ENABLED /* support for twin-engine planes */ void Plane::servos_twin_engine_mix(void) { float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); float rud_gain = float(plane.g2.rudd_dt_gain) * 0.01f; rudder_dt = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / SERVO_MAX; #if AP_ADVANCEDFAILSAFE_ENABLED if (afs.should_crash_vehicle()) { // when in AFS failsafe force rudder input for differential thrust to zero rudder_dt = 0; } #endif float throttle_left, throttle_right; if (throttle < 0 && have_reverse_thrust() && allow_reverse_thrust()) { // doing reverse thrust throttle_left = constrain_float(throttle + 50 * rudder_dt, -100, 0); throttle_right = constrain_float(throttle - 50 * rudder_dt, -100, 0); } else if (throttle <= 0) { throttle_left = throttle_right = 0; } else { // doing forward thrust throttle_left = constrain_float(throttle + 50 * rudder_dt, 0, 100); throttle_right = constrain_float(throttle - 50 * rudder_dt, 0, 100); } if (!arming.is_armed_and_safety_off()) { if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM); } else { SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0); } } else { SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right); throttle_slew_limit(SRV_Channel::k_throttleLeft); throttle_slew_limit(SRV_Channel::k_throttleRight); } } /* Set throttle,attitude(in Attitude.cpp), and tilt servos for forced flare by RCx_OPTION switch for landing in FW mode For Fixed Wind modes with manual throttle control only. Forces tilts up and throttle to THR_MIN. Throttle stick must be in idle deadzone. This allows non-momentary switch to be used and quick bailouts for go-arounds. Also helps prevent propstrike after landing with switch release on ground. */ void Plane::force_flare(void) { #if HAL_QUADPLANE_ENABLED if (quadplane.in_transition() && plane.arming.is_armed()) { //allows for ground checking of flare tilts return; } if (control_mode->is_vtol_mode()) { return; } /* to be active must be: -manual throttle mode -in an enabled flare mode (RC switch active) -at zero thrust: in throttle trim dz except for sprung throttle option where trim is at hover stick */ if (!control_mode->does_auto_throttle() && flare_mode != FlareMode::FLARE_DISABLED && throttle_at_zero()) { int32_t tilt = -SERVO_MAX; //this is tilts up for a normal tiltrotor if at zero thrust throttle stick if (quadplane.tiltrotor.enabled() && (quadplane.tiltrotor.type == Tiltrotor::TILT_TYPE_BICOPTER)) { tilt = 0; // this is tilts up for a Bicopter } if (quadplane.tailsitter.enabled()) { tilt = SERVO_MAX; //this is tilts up for a tailsitter } SRV_Channels::set_output_scaled(SRV_Channel::k_motor_tilt, tilt); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRear, tilt); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearLeft, tilt); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearRight, tilt); float throttle_min = MAX(aparm.throttle_min.get(),0); //allows ICE to run if used but accounts for reverse thrust setups if (arming.is_armed()) { //prevent running motors if unarmed SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle_min); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_min); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_min); } } #endif } /* Set the flight control servos based on the current calculated values This function operates by first building up output values for channels using set_servo() and set_radio_out(). Using set_radio_out() is for when a raw PWM value of output is given which does not depend on any output scaling. Using set_servo() is for when scaling and mixing will be needed. Finally servos_output() is called to push the final PWM values for output channels */ void Plane::set_servos(void) { // start with output corked. the cork is released when we run // servos_output(), which is run from all code paths in this // function SRV_Channels::cork(); // this is to allow the failsafe module to deliberately crash // the plane. Only used in extreme circumstances to meet the // OBC rules #if AP_ADVANCEDFAILSAFE_ENABLED if (afs.should_crash_vehicle()) { afs.terminate_vehicle(); if (!afs.terminating_vehicle_via_landing()) { return; } } #endif // do any transition updates for quadplane #if HAL_QUADPLANE_ENABLED quadplane.update(); #endif if (flight_stage == AP_FixedWing::FlightStage::LAND) { // allow landing to override servos if it would like to landing.override_servos(); } if (control_mode != &mode_manual) { set_throttle(); } // Warn AHRS if we might take off soon set_takeoff_expected(); // setup flap outputs set_servos_flaps(); #if AP_LANDINGGEAR_ENABLED // setup landing gear output set_landing_gear(); #endif // set airbrake outputs airbrake_update(); // slew rate limit throttle throttle_slew_limit(SRV_Channel::k_throttle); int8_t min_throttle = 0; #if AP_ICENGINE_ENABLED if (g2.ice_control.allow_throttle_while_disarmed()) { min_throttle = MAX(aparm.throttle_min.get(), 0); } const float base_throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); #endif if (!arming.is_armed()) { //Some ESCs get noisy (beep error msgs) if PWM == 0. //This little segment aims to avoid this. switch (arming.arming_required()) { case AP_Arming::Required::NO: //keep existing behavior: do nothing to radio_out //(don't disarm throttle channel even if AP_Arming class is) break; case AP_Arming::Required::YES_ZERO_PWM: SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, 0); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, 0); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, 0); break; case AP_Arming::Required::YES_MIN_PWM: default: SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, min_throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, min_throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, min_throttle); break; } } #if AP_ICENGINE_ENABLED float override_pct = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); if (g2.ice_control.throttle_override(override_pct, base_throttle)) { // the ICE controller wants to override the throttle for starting, idle, or redline SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, override_pct); #if HAL_QUADPLANE_ENABLED quadplane.vel_forward.integrator = 0; #endif } #endif // AP_ICENGINE_ENABLED // run output mixer and send values to the hal for output servos_output(); } /* This sets servos to neutral if it is a control surface servo in auto mode */ void Plane::landing_neutral_control_surface_servos(void) { if (!(landing.get_then_servos_neutral() > 0 && control_mode == &mode_auto && landing.get_disarm_delay() > 0 && landing.is_complete() && !arming.is_armed())) { return; } // after an auto land and auto disarm, set the servos to be neutral just // in case we're upside down or some crazy angle and straining the servos. for (uint8_t i = 0; i < NUM_SERVO_CHANNELS ; i++) { SRV_Channel *chan = SRV_Channels::srv_channel(i); if (chan == nullptr || !SRV_Channel::is_control_surface(chan->get_function())) { continue; } if (landing.get_then_servos_neutral() == 1) { SRV_Channels::set_output_scaled(chan->get_function(), 0); } else if (landing.get_then_servos_neutral() == 2) { SRV_Channels::set_output_limit(chan->get_function(), SRV_Channel::Limit::ZERO_PWM); } } } /* sets rudder/vtail , and elevon to indicator positions that we are in a rudder arming waiting for neutral stick state */ void Plane::indicate_waiting_for_rud_neutral_to_takeoff(void) { if (takeoff_state.waiting_for_rudder_neutral) { SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left); if (!SRV_Channels::function_assigned(SRV_Channel::k_rudder) && !SRV_Channels::function_assigned(SRV_Channel::k_vtail_left)) { // if no rudder indication possible, neutral elevons during wait because on takeoff stance they are usually both full up SRV_Channels::set_output_scaled(SRV_Channel::k_elevon_right, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_elevon_left, 0); } } } /* run configured output mixer. This takes calculated servo_out values for each channel and calculates PWM values, then pushes them to hal.rcout */ void Plane::servos_output(void) { SRV_Channels::cork(); // support twin-engine aircraft servos_twin_engine_mix(); // run vtail and elevon mixers channel_function_mixer(SRV_Channel::k_aileron, SRV_Channel::k_elevator, SRV_Channel::k_elevon_left, SRV_Channel::k_elevon_right); channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left); #if HAL_QUADPLANE_ENABLED // cope with tailsitters and bicopters quadplane.tailsitter.output(); quadplane.tiltrotor.bicopter_output(); #endif // support forced flare option force_flare(); // implement differential spoilers dspoiler_update(); // set control surface servos to neutral landing_neutral_control_surface_servos(); // set rudder arm waiting for neutral control throws (rudder neutral, aileron/rt vtail/rt elevon to full right) if (flight_option_enabled(FlightOptions::INDICATE_WAITING_FOR_RUDDER_NEUTRAL)) { indicate_waiting_for_rud_neutral_to_takeoff(); } // support MANUAL_RCMASK if (g2.manual_rc_mask.get() != 0 && control_mode == &mode_manual) { SRV_Channels::copy_radio_in_out_mask(uint32_t(g2.manual_rc_mask.get())); } SRV_Channels::calc_pwm(); SRV_Channels::output_ch_all(); SRV_Channels::push(); if (g2.servo_channels.auto_trim_enabled()) { servos_auto_trim(); } } void Plane::update_throttle_hover() { // update hover throttle at 100Hz #if HAL_QUADPLANE_ENABLED quadplane.update_throttle_hover(); #endif } /* implement automatic persistent trim of control surfaces with AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it would impact R/C transmitter calibration */ void Plane::servos_auto_trim(void) { // only in auto modes and FBWA if (!control_mode->does_auto_throttle() && control_mode != &mode_fbwa) { return; } if (!arming.is_armed_and_safety_off()) { return; } if (!is_flying()) { return; } #if HAL_QUADPLANE_ENABLED if (!quadplane.allow_servo_auto_trim()) { // can't auto-trim with quadplane motors running return; } #endif if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) { // only when close to level return; } uint32_t now = AP_HAL::millis(); if (now - auto_trim.last_trim_check < 500) { // check twice a second. We want slow trim update return; } if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) { // only when definitely moving return; } // adjust trim on channels by a small amount according to I value float roll_I = rollController.get_pid_info().I; float pitch_I = pitchController.get_pid_info().I; g2.servo_channels.adjust_trim(SRV_Channel::k_aileron, roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_elevator, pitch_I); g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_left, pitch_I - roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_right, pitch_I + roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_left, pitch_I); g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_right, pitch_I); g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_left, roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_right, roll_I); // cope with various dspoiler options const int8_t bitmask = g2.crow_flap_options.get(); const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0; const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0; float dspoiler_outer_left = - roll_I; float dspoiler_inner_left = 0.0f; float dspoiler_outer_right = roll_I; float dspoiler_inner_right = 0.0f; if (flying_wing) { dspoiler_outer_left += pitch_I; dspoiler_outer_right += pitch_I; } if (full_span_aileron) { dspoiler_inner_left = dspoiler_outer_left; dspoiler_inner_right = dspoiler_outer_right; } g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right); auto_trim.last_trim_check = now; if (now - auto_trim.last_trim_save > 10000) { auto_trim.last_trim_save = now; g2.servo_channels.save_trim(); } }