/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
main logic for servo control
*/
#include "Plane.h"
#include
/*****************************************
* Throttle slew limit
*****************************************/
void Plane::throttle_slew_limit(void)
{
uint8_t slewrate = aparm.throttle_slewrate;
if (control_mode==AUTO) {
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) {
slewrate = g.takeoff_throttle_slewrate;
} else if (landing.get_throttle_slewrate() != 0 && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
slewrate = landing.get_throttle_slewrate();
}
}
// if slew limit rate is set to zero then do not slew limit
if (slewrate) {
SRV_Channels::limit_slew_rate(SRV_Channel::k_throttle, slewrate, G_Dt);
}
}
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
Disable throttle if following conditions are met:
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
* AND
* 2 - Our reported altitude is within 10 meters of the home altitude.
* 3 - Our reported speed is under 5 meters per second.
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
* OR
* 5 - Home location is not set
* OR
* 6- Landing does not want to allow throttle
*/
bool Plane::suppress_throttle(void)
{
#if PARACHUTE == ENABLED
if (auto_throttle_mode && parachute.release_initiated()) {
// throttle always suppressed in auto-throttle modes after parachute release initiated
throttle_suppressed = true;
return true;
}
#endif
if (landing.is_throttle_suppressed()) {
return true;
}
if (!throttle_suppressed) {
// we've previously met a condition for unsupressing the throttle
return false;
}
if (!auto_throttle_mode) {
// the user controls the throttle
throttle_suppressed = false;
return false;
}
if (control_mode==AUTO && g.auto_fbw_steer == 42) {
// user has throttle control
return false;
}
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5);
if (control_mode==AUTO &&
auto_state.takeoff_complete == false) {
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000;
if (is_flying() &&
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch
gps_movement) { // definite gps movement
// we're already flying, do not suppress the throttle. We can get
// stuck in this condition if we reset a mission and cmd 1 is takeoff
// but we're currently flying around below the takeoff altitude
throttle_suppressed = false;
return false;
}
if (auto_takeoff_check()) {
// we're in auto takeoff
throttle_suppressed = false;
auto_state.baro_takeoff_alt = barometer.get_altitude();
return false;
}
// keep throttle suppressed
return true;
}
if (fabsf(relative_altitude) >= 10.0f) {
// we're more than 10m from the home altitude
throttle_suppressed = false;
return false;
}
if (gps_movement) {
// if we have an airspeed sensor, then check it too, and
// require 5m/s. This prevents throttle up due to spiky GPS
// groundspeed with bad GPS reception
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) {
// we're moving at more than 5 m/s
throttle_suppressed = false;
return false;
}
}
if (quadplane.is_flying()) {
throttle_suppressed = false;
return false;
}
// throttle remains suppressed
return true;
}
/*
implement a software VTail or elevon mixer. There are 4 different mixing modes
*/
void Plane::channel_output_mixer_pwm(uint8_t mixing_type, uint16_t & chan1_out, uint16_t & chan2_out) const
{
int16_t c1, c2;
int16_t v1, v2;
// first get desired elevator and rudder as -500..500 values
c1 = chan1_out - 1500;
c2 = chan2_out - 1500;
// apply MIXING_OFFSET to input channels using long-integer version
// of formula: x = x * (g.mixing_offset/100.0 + 1.0)
// -100 => 2x on 'c1', 100 => 2x on 'c2'
if (g.mixing_offset < 0) {
c1 = (int16_t)(((int32_t)c1) * (-g.mixing_offset+100) / 100);
} else if (g.mixing_offset > 0) {
c2 = (int16_t)(((int32_t)c2) * (g.mixing_offset+100) / 100);
}
v1 = (c1 - c2) * g.mixing_gain;
v2 = (c1 + c2) * g.mixing_gain;
// now map to mixed output
switch (mixing_type) {
case MIXING_DISABLED:
return;
case MIXING_UPUP:
break;
case MIXING_UPDN:
v2 = -v2;
break;
case MIXING_DNUP:
v1 = -v1;
break;
case MIXING_DNDN:
v1 = -v1;
v2 = -v2;
break;
case MIXING_UPUP_SWP:
std::swap(v1, v2);
break;
case MIXING_UPDN_SWP:
v2 = -v2;
std::swap(v1, v2);
break;
case MIXING_DNUP_SWP:
v1 = -v1;
std::swap(v1, v2);
break;
case MIXING_DNDN_SWP:
v1 = -v1;
v2 = -v2;
std::swap(v1, v2);
break;
}
// scale for a 1500 center and 900..2100 range, symmetric
v1 = constrain_int16(v1, -600, 600);
v2 = constrain_int16(v2, -600, 600);
chan1_out = 1500 + v1;
chan2_out = 1500 + v2;
}
/*
output mixer based on two channel output types
*/
void Plane::channel_output_mixer(uint8_t mixing_type, SRV_Channel::Aux_servo_function_t func1, SRV_Channel::Aux_servo_function_t func2)
{
SRV_Channel *chan1, *chan2;
if (!(chan1 = SRV_Channels::get_channel_for(func1)) ||
!(chan2 = SRV_Channels::get_channel_for(func2))) {
return;
}
uint16_t chan1_out, chan2_out;
chan1_out = chan1->get_output_pwm();
chan2_out = chan2->get_output_pwm();
channel_output_mixer_pwm(mixing_type, chan1_out, chan2_out);
chan1->set_output_pwm(chan1_out);
chan2->set_output_pwm(chan2_out);
}
/*
mixer for elevon and vtail channels setup using designated servo
function values. This mixer operates purely on scaled values,
allowing the user to trim and limit individual servos using the
SERVOn_* parameters
*/
void Plane::channel_function_mixer(SRV_Channel::Aux_servo_function_t func1_in, SRV_Channel::Aux_servo_function_t func2_in,
SRV_Channel::Aux_servo_function_t func1_out, SRV_Channel::Aux_servo_function_t func2_out)
{
// the order is setup so that non-reversed servos go "up", and
// func1 is the "left" channel. Users can adjust with channel
// reversal as needed
float in1 = SRV_Channels::get_output_scaled(func1_in);
float in2 = SRV_Channels::get_output_scaled(func2_in);
float out1 = constrain_float((in2 - in1) * g.mixing_gain, -4500, 4500);
float out2 = constrain_float((in2 + in1) * g.mixing_gain, -4500, 4500);
SRV_Channels::set_output_scaled(func1_out, out1);
SRV_Channels::set_output_scaled(func2_out, out2);
}
/*
setup flaperon output channels
*/
void Plane::flaperon_update(int8_t flap_percent)
{
if (!SRV_Channels::function_assigned(SRV_Channel::k_flaperon_left) &&
!SRV_Channels::function_assigned(SRV_Channel::k_flaperon_right)) {
return;
}
/*
flaperons are implemented as a mixer between aileron and a
percentage of flaps. Flap input can come from a manual channel
or from auto flaps.
*/
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
float flaperon_left = constrain_float(aileron + flap_percent * 45, -4500, 4500);
float flaperon_right = constrain_float(aileron - flap_percent * 45, -4500, 4500);
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_left, flaperon_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_right, flaperon_right);
}
/*
setup differential spoiler output channels
Differential spoilers are a type of elevon that is split on each
wing to give yaw control, mixed from rudder
*/
void Plane::dspoiler_update(void)
{
// just check we have a left dspoiler, and if so calculate all outputs
if (!SRV_Channels::function_assigned(SRV_Channel::k_dspoilerLeft1)) {
return;
}
float elevon_left = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left);
float elevon_right = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right);
float rudder = SRV_Channels::get_output_scaled(SRV_Channel::k_rudder);
float dspoiler1_left = elevon_left;
float dspoiler2_left = elevon_left;
float dspoiler1_right = elevon_right;
float dspoiler2_right = elevon_right;
if (rudder > 0) {
// apply rudder to right wing
dspoiler1_right = constrain_float(elevon_right + rudder, -4500, 4500);
dspoiler2_right = constrain_float(elevon_right - rudder, -4500, 4500);
} else {
// apply rudder to left wing
dspoiler1_left = constrain_float(elevon_left + rudder, -4500, 4500);
dspoiler2_left = constrain_float(elevon_left - rudder, -4500, 4500);
}
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft1, dspoiler1_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft2, dspoiler2_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight1, dspoiler1_right);
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight2, dspoiler2_right);
}
/*
setup servos for idle mode
Idle mode is used during balloon launch to keep servos still, apart
from occasional wiggle to prevent freezing up
*/
void Plane::set_servos_idle(void)
{
if (auto_state.idle_wiggle_stage == 0) {
SRV_Channels::output_trim_all();
return;
}
int16_t servo_value = 0;
// move over full range for 2 seconds
auto_state.idle_wiggle_stage += 2;
if (auto_state.idle_wiggle_stage < 50) {
servo_value = auto_state.idle_wiggle_stage * (4500 / 50);
} else if (auto_state.idle_wiggle_stage < 100) {
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
} else if (auto_state.idle_wiggle_stage < 150) {
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
} else if (auto_state.idle_wiggle_stage < 200) {
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50);
} else {
auto_state.idle_wiggle_stage = 0;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, servo_value);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, servo_value);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, servo_value);
SRV_Channels::set_output_to_trim(SRV_Channel::k_throttle);
SRV_Channels::output_ch_all();
}
/*
pass through channels in manual mode
*/
void Plane::set_servos_manual_passthrough(void)
{
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, channel_roll->get_control_in_zero_dz());
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, channel_pitch->get_control_in_zero_dz());
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, channel_rudder->get_control_in_zero_dz());
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz());
}
/*
calculate any throttle limits based on the watt limiter
*/
void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle)
{
uint32_t now = millis();
if (battery.overpower_detected()) {
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value
// throttle limit will attack by 10% per second
if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > 0 && // demanding too much positive thrust
throttle_watt_limit_max < max_throttle - 25 &&
now - throttle_watt_limit_timer_ms >= 1) {
// always allow for 25% throttle available regardless of battery status
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_max++;
} else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0 &&
min_throttle < 0 && // reverse thrust is available
throttle_watt_limit_min < -(min_throttle) - 25 &&
now - throttle_watt_limit_timer_ms >= 1) {
// always allow for 25% throttle available regardless of battery status
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_min++;
}
} else if (now - throttle_watt_limit_timer_ms >= 1000) {
// it has been 1 second since last over-current, check if we can resume higher throttle.
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down
// throttle limit will release by 1% per second
if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > throttle_watt_limit_max && // demanding max forward thrust
throttle_watt_limit_max > 0) { // and we're currently limiting it
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_max--;
} else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < throttle_watt_limit_min && // demanding max negative thrust
throttle_watt_limit_min > 0) { // and we're limiting it
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_min--;
}
}
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max);
if (min_throttle < 0) {
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0);
}
}
/*
setup output channels all non-manual modes
*/
void Plane::set_servos_controlled(void)
{
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
// allow landing to override servos if it would like to
landing.override_servos();
}
// convert 0 to 100% (or -100 to +100) into PWM
int8_t min_throttle = aparm.throttle_min.get();
int8_t max_throttle = aparm.throttle_max.get();
if (min_throttle < 0 && !allow_reverse_thrust()) {
// reverse thrust is available but inhibited.
min_throttle = 0;
}
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF || flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) {
if(aparm.takeoff_throttle_max != 0) {
max_throttle = aparm.takeoff_throttle_max;
} else {
max_throttle = aparm.throttle_max;
}
} else if (landing.is_flaring()) {
min_throttle = 0;
}
// apply watt limiter
throttle_watt_limiter(min_throttle, max_throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
constrain_int16(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), min_throttle, max_throttle));
if (!hal.util->get_soft_armed()) {
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) {
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
} else {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
}
} else if (suppress_throttle()) {
// throttle is suppressed in auto mode
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
if (g.throttle_suppress_manual) {
// manual pass through of throttle while throttle is suppressed
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz());
}
} else if (g.throttle_passthru_stabilize &&
(control_mode == STABILIZE ||
control_mode == TRAINING ||
control_mode == ACRO ||
control_mode == FLY_BY_WIRE_A ||
control_mode == AUTOTUNE) &&
!failsafe.ch3_counter) {
// manual pass through of throttle while in FBWA or
// STABILIZE mode with THR_PASS_STAB set
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz());
} else if ((control_mode == GUIDED || control_mode == AVOID_ADSB) &&
guided_throttle_passthru) {
// manual pass through of throttle while in GUIDED
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz());
} else if (quadplane.in_vtol_mode()) {
// ask quadplane code for forward throttle
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, quadplane.forward_throttle_pct());
}
// suppress throttle when soaring is active
if ((control_mode == FLY_BY_WIRE_B || control_mode == CRUISE ||
control_mode == AUTO || control_mode == LOITER) &&
g2.soaring_controller.is_active() &&
g2.soaring_controller.get_throttle_suppressed()) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
}
}
/*
setup flap outputs
*/
void Plane::set_servos_flaps(void)
{
// Auto flap deployment
int8_t auto_flap_percent = 0;
int8_t manual_flap_percent = 0;
// work out any manual flap input
RC_Channel *flapin = RC_Channels::rc_channel(g.flapin_channel-1);
if (flapin != nullptr && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) {
flapin->input();
manual_flap_percent = flapin->percent_input();
}
if (auto_throttle_mode) {
int16_t flapSpeedSource = 0;
if (ahrs.airspeed_sensor_enabled()) {
flapSpeedSource = target_airspeed_cm * 0.01f;
} else {
flapSpeedSource = aparm.throttle_cruise;
}
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) {
auto_flap_percent = g.flap_2_percent;
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) {
auto_flap_percent = g.flap_1_percent;
} //else flaps stay at default zero deflection
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND && landing.get_flap_percent() != 0) {
auto_flap_percent = landing.get_flap_percent();
}
/*
special flap levels for takeoff and landing. This works
better than speed based flaps as it leads to less
possibility of oscillation
*/
if (control_mode == AUTO) {
switch (flight_stage) {
case AP_Vehicle::FixedWing::FLIGHT_TAKEOFF:
case AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND:
if (g.takeoff_flap_percent != 0) {
auto_flap_percent = g.takeoff_flap_percent;
}
break;
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
if (g.takeoff_flap_percent != 0 && in_preLaunch_flight_stage()) {
// TODO: move this to a new FLIGHT_PRE_TAKEOFF stage
auto_flap_percent = g.takeoff_flap_percent;
}
break;
default:
break;
}
}
}
// manual flap input overrides auto flap input
if (abs(manual_flap_percent) > auto_flap_percent) {
auto_flap_percent = manual_flap_percent;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_flap_auto, auto_flap_percent);
SRV_Channels::set_output_scaled(SRV_Channel::k_flap, manual_flap_percent);
if (g.flap_slewrate) {
SRV_Channels::limit_slew_rate(SRV_Channel::k_flap_auto, g.flap_slewrate, G_Dt);
SRV_Channels::limit_slew_rate(SRV_Channel::k_flap, g.flap_slewrate, G_Dt);
}
// output to flaperons, if any
flaperon_update(auto_flap_percent);
}
/*
apply vtail and elevon mixers
the rewrites radio_out for the corresponding channels
*/
void Plane::servo_output_mixers(void)
{
// mix elevons and vtail channels
channel_function_mixer(SRV_Channel::k_aileron, SRV_Channel::k_elevator, SRV_Channel::k_elevon_left, SRV_Channel::k_elevon_right);
channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left);
// implement differential spoilers
dspoiler_update();
}
/*
support for twin-engine planes
*/
void Plane::servos_twin_engine_mix(void)
{
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
float rud_gain = float(plane.g2.rudd_dt_gain) / 100;
float rudder = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / float(SERVO_MAX);
float throttle_left, throttle_right;
if (throttle < 0 && aparm.throttle_min < 0) {
// doing reverse thrust
throttle_left = constrain_float(throttle + 50 * rudder, -100, 0);
throttle_right = constrain_float(throttle - 50 * rudder, -100, 0);
} else if (throttle <= 0) {
throttle_left = throttle_right = 0;
} else {
// doing forward thrust
throttle_left = constrain_float(throttle + 50 * rudder, 0, 100);
throttle_right = constrain_float(throttle - 50 * rudder, 0, 100);
}
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right);
}
/*
Set the flight control servos based on the current calculated values
This function operates by first building up output values for
channels using set_servo() and set_radio_out(). Using
set_radio_out() is for when a raw PWM value of output is given which
does not depend on any output scaling. Using set_servo() is for when
scaling and mixing will be needed.
Finally servos_output() is called to push the final PWM values
for output channels
*/
void Plane::set_servos(void)
{
// start with output corked. the cork is released when we run
// servos_output(), which is run from all code paths in this
// function
hal.rcout->cork();
// this is to allow the failsafe module to deliberately crash
// the plane. Only used in extreme circumstances to meet the
// OBC rules
if (afs.should_crash_vehicle()) {
afs.terminate_vehicle();
return;
}
// do any transition updates for quadplane
quadplane.update();
if (control_mode == AUTO && auto_state.idle_mode) {
// special handling for balloon launch
set_servos_idle();
servos_output();
return;
}
/*
see if we are doing ground steering.
*/
if (!steering_control.ground_steering) {
// we are not at an altitude for ground steering. Set the nose
// wheel to the rudder just in case the barometer has drifted
// a lot
steering_control.steering = steering_control.rudder;
} else if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) {
// we are within the ground steering altitude but don't have a
// dedicated steering channel. Set the rudder to the ground
// steering output
steering_control.rudder = steering_control.steering;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder);
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run
steering_control.ground_steering = false;
if (control_mode == TRAINING) {
steering_control.rudder = channel_rudder->get_control_in();
}
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder);
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering_control.steering);
if (control_mode == MANUAL) {
set_servos_manual_passthrough();
} else {
set_servos_controlled();
}
// setup flap outputs
set_servos_flaps();
if (control_mode >= FLY_BY_WIRE_B ||
quadplane.in_assisted_flight() ||
quadplane.in_vtol_mode()) {
/* only do throttle slew limiting in modes where throttle
* control is automatic */
throttle_slew_limit();
}
if (!arming.is_armed()) {
//Some ESCs get noisy (beep error msgs) if PWM == 0.
//This little segment aims to avoid this.
switch (arming.arming_required()) {
case AP_Arming::NO:
//keep existing behavior: do nothing to radio_out
//(don't disarm throttle channel even if AP_Arming class is)
break;
case AP_Arming::YES_ZERO_PWM:
SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, 0);
break;
case AP_Arming::YES_MIN_PWM:
default:
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
break;
}
}
#if HIL_SUPPORT
if (g.hil_mode == 1) {
// get the servos to the GCS immediately for HIL
if (HAVE_PAYLOAD_SPACE(MAVLINK_COMM_0, RC_CHANNELS_SCALED)) {
send_servo_out(MAVLINK_COMM_0);
}
if (!g.hil_servos) {
// we don't run the output mixer
return;
}
}
#endif
if (landing.get_then_servos_neutral() > 0 &&
control_mode == AUTO &&
landing.get_disarm_delay() > 0 &&
landing.is_complete() &&
!arming.is_armed()) {
// after an auto land and auto disarm, set the servos to be neutral just
// in case we're upside down or some crazy angle and straining the servos.
if (landing.get_then_servos_neutral() == 1) {
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, 0);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, 0);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0);
} else if (landing.get_then_servos_neutral() == 2) {
SRV_Channels::set_output_limit(SRV_Channel::k_aileron, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_output_limit(SRV_Channel::k_elevator, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_output_limit(SRV_Channel::k_rudder, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
}
}
uint8_t override_pct;
if (g2.ice_control.throttle_override(override_pct)) {
// the ICE controller wants to override the throttle for starting
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, override_pct);
}
// run output mixer and send values to the hal for output
servos_output();
}
/*
run configured output mixer. This takes calculated servo_out values
for each channel and calculates PWM values, then pushes them to
hal.rcout
*/
void Plane::servos_output(void)
{
hal.rcout->cork();
// support twin-engine aircraft
servos_twin_engine_mix();
// cope with tailsitters
quadplane.tailsitter_output();
// the mixers need pwm to be calculated now
SRV_Channels::calc_pwm();
// run vtail and elevon mixers
servo_output_mixers();
// support MANUAL_RCMASK
if (g2.manual_rc_mask.get() != 0 && control_mode == MANUAL) {
SRV_Channels::copy_radio_in_out_mask(uint16_t(g2.manual_rc_mask.get()));
}
SRV_Channels::calc_pwm();
SRV_Channels::output_ch_all();
hal.rcout->push();
if (g2.servo_channels.auto_trim_enabled()) {
servos_auto_trim();
}
}
/*
implement automatic persistent trim of control surfaces with
AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it
would impact R/C transmitter calibration
*/
void Plane::servos_auto_trim(void)
{
// only in auto modes and FBWA
if (!auto_throttle_mode && control_mode != FLY_BY_WIRE_A) {
return;
}
if (!hal.util->get_soft_armed()) {
return;
}
if (!is_flying()) {
return;
}
if (quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) {
// can't auto-trim with quadplane motors running
return;
}
if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) {
// only when close to level
return;
}
uint32_t now = AP_HAL::millis();
if (now - auto_trim.last_trim_check < 500) {
// check twice a second. We want slow trim update
return;
}
if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) {
// only when definitely moving
return;
}
// adjust trim on channels by a small amount according to I value
float roll_I = rollController.get_pid_info().I;
float pitch_I = pitchController.get_pid_info().I;
g2.servo_channels.adjust_trim(SRV_Channel::k_aileron, roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_elevator, pitch_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_left, pitch_I - roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_right, pitch_I + roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_left, pitch_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_right, pitch_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_left, roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_right, -roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft1, pitch_I - roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft2, pitch_I - roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight1, pitch_I + roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight2, pitch_I + roll_I);
auto_trim.last_trim_check = now;
if (now - auto_trim.last_trim_save > 10000) {
auto_trim.last_trim_save = now;
g2.servo_channels.save_trim();
}
}