// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" // This file contains the high-level takeoff logic for Loiter, PosHold, AltHold, Sport modes. // The take-off can be initiated from a GCS NAV_TAKEOFF command which includes a takeoff altitude // A safe takeoff speed is calculated and used to calculate a time_ms // the pos_control target is then slowly increased until time_ms expires // return true if this flight mode supports user takeoff // must_nagivate is true if mode must also control horizontal position bool Copter::current_mode_has_user_takeoff(bool must_navigate) { switch (control_mode) { case GUIDED: case LOITER: case POSHOLD: return true; case ALT_HOLD: case SPORT: return !must_navigate; default: return false; } } // initiate user takeoff - called when MAVLink TAKEOFF command is received bool Copter::do_user_takeoff(float takeoff_alt_cm, bool must_navigate) { if (motors.armed() && ap.land_complete && current_mode_has_user_takeoff(must_navigate) && takeoff_alt_cm > current_loc.alt) { #if FRAME_CONFIG == HELI_FRAME // Helicopters should return false if MAVlink takeoff command is received while the rotor is not spinning if (!motors.rotor_runup_complete()) { return false; } #endif switch(control_mode) { case GUIDED: if (guided_takeoff_start(takeoff_alt_cm)) { set_auto_armed(true); return true; } return false; case LOITER: case POSHOLD: case ALT_HOLD: case SPORT: set_auto_armed(true); takeoff_timer_start(takeoff_alt_cm); return true; default: return false; } } return false; } // start takeoff to specified altitude above home in centimeters void Copter::takeoff_timer_start(float alt_cm) { // calculate climb rate float speed = MIN(wp_nav.get_speed_up(), MAX(g.pilot_velocity_z_max*2.0f/3.0f, g.pilot_velocity_z_max-50.0f)); // sanity check speed and target if (takeoff_state.running || speed <= 0.0f || alt_cm <= 0.0f) { return; } // initialise takeoff state takeoff_state.running = true; takeoff_state.max_speed = speed; takeoff_state.start_ms = millis(); takeoff_state.alt_delta = alt_cm; } // stop takeoff void Copter::takeoff_stop() { takeoff_state.running = false; takeoff_state.start_ms = 0; } // returns pilot and takeoff climb rates // pilot_climb_rate is both an input and an output // takeoff_climb_rate is only an output // has side-effect of turning takeoff off when timeout as expired void Copter::takeoff_get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate) { // return pilot_climb_rate if take-off inactive if (!takeoff_state.running) { takeoff_climb_rate = 0.0f; return; } // acceleration of 50cm/s/s static const float takeoff_accel = 50.0f; float takeoff_minspeed = MIN(50.0f,takeoff_state.max_speed); float time_elapsed = (millis()-takeoff_state.start_ms)*1.0e-3f; float speed = MIN(time_elapsed*takeoff_accel+takeoff_minspeed, takeoff_state.max_speed); float time_to_max_speed = (takeoff_state.max_speed-takeoff_minspeed)/takeoff_accel; float height_gained; if (time_elapsed <= time_to_max_speed) { height_gained = 0.5f*takeoff_accel*sq(time_elapsed) + takeoff_minspeed*time_elapsed; } else { height_gained = 0.5f*takeoff_accel*sq(time_to_max_speed) + takeoff_minspeed*time_to_max_speed + (time_elapsed-time_to_max_speed)*takeoff_state.max_speed; } // check if the takeoff is over if (height_gained >= takeoff_state.alt_delta) { takeoff_stop(); } // if takeoff climb rate is zero return if (speed <= 0.0f) { takeoff_climb_rate = 0.0f; return; } // default take-off climb rate to maximum speed takeoff_climb_rate = speed; // if pilot's commands descent if (pilot_climb_rate < 0.0f) { // if overall climb rate is still positive, move to take-off climb rate if (takeoff_climb_rate + pilot_climb_rate > 0.0f) { takeoff_climb_rate = takeoff_climb_rate + pilot_climb_rate; pilot_climb_rate = 0; } else { // if overall is negative, move to pilot climb rate pilot_climb_rate = pilot_climb_rate + takeoff_climb_rate; takeoff_climb_rate = 0.0f; } } else { // pilot commands climb // pilot climb rate is zero until it surpasses the take-off climb rate if (pilot_climb_rate > takeoff_climb_rate) { pilot_climb_rate = pilot_climb_rate - takeoff_climb_rate; } else { pilot_climb_rate = 0.0f; } } } void Copter::auto_takeoff_set_start_alt(void) { // start with our current altitude auto_takeoff_no_nav_alt_cm = inertial_nav.get_altitude(); if (!motors.armed() || !ap.auto_armed || !motors.get_interlock() || ap.land_complete) { // we are not flying, add the wp_navalt_min auto_takeoff_no_nav_alt_cm += g2.wp_navalt_min * 100; } } /* call attitude controller for automatic takeoff, limiting roll/pitch if below wp_navalt_min */ void Copter::auto_takeoff_attitude_run(float target_yaw_rate) { float nav_roll, nav_pitch; if (g2.wp_navalt_min > 0 && inertial_nav.get_altitude() < auto_takeoff_no_nav_alt_cm) { // we haven't reached the takeoff navigation altitude yet nav_roll = 0; nav_pitch = 0; #if FRAME_CONFIG == HELI_FRAME // prevent hover roll starting till past specified altitude hover_roll_trim_scalar_slew = 0; #endif // tell the position controller that we have limited roll/pitch demand to prevent integrator buildup pos_control.set_limit_accel_xy(); } else { nav_roll = wp_nav.get_roll(); nav_pitch = wp_nav.get_pitch(); } // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate, get_smoothing_gain()); }