/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Initial Code by Jon Challinger // Modified by Paul Riseborough #include #include "AP_PitchController.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_PitchController::var_info[] = { // @Param: TCONST // @DisplayName: Pitch Time Constant // @Description: Time constant in seconds from demanded to achieved pitch angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help. // @Range: 0.4 1.0 // @Units: s // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("TCONST", 0, AP_PitchController, gains.tau, 0.5f), // @Param: P // @DisplayName: Proportional Gain // @Description: Proportional gain from pitch angle demands to elevator. Higher values allow more servo response but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. // @Range: 0.1 3.0 // @Increment: 0.1 // @User: User AP_GROUPINFO("P", 1, AP_PitchController, gains.P, 1.0f), // @Param: D // @DisplayName: Damping Gain // @Description: Damping gain from pitch acceleration to elevator. Higher values reduce pitching in turbulence, but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. // @Range: 0 0.2 // @Increment: 0.01 // @User: User AP_GROUPINFO("D", 2, AP_PitchController, gains.D, 0.04f), // @Param: I // @DisplayName: Integrator Gain // @Description: Integrator gain from long-term pitch angle offsets to elevator. Higher values "trim" out offsets faster but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. // @Range: 0 0.5 // @Increment: 0.05 // @User: User AP_GROUPINFO("I", 3, AP_PitchController, gains.I, 0.3f), // @Param: RMAX_UP // @DisplayName: Pitch up max rate // @Description: Maximum pitch up rate that the pitch controller demands (degrees/sec) in ACRO mode. // @Range: 0 100 // @Units: deg/s // @Increment: 1 // @User: Advanced AP_GROUPINFO("RMAX_UP", 4, AP_PitchController, gains.rmax, 0.0f), // @Param: RMAX_DN // @DisplayName: Pitch down max rate // @Description: This sets the maximum nose down pitch rate that the controller will demand (degrees/sec). Setting it to zero disables the limit. // @Range: 0 100 // @Units: deg/s // @Increment: 1 // @User: Advanced AP_GROUPINFO("RMAX_DN", 5, AP_PitchController, _max_rate_neg, 0.0f), // @Param: RLL // @DisplayName: Roll compensation // @Description: Gain added to pitch to keep aircraft from descending or ascending in turns. Increase in increments of 0.05 to reduce altitude loss. Decrease for altitude gain. // @Range: 0.7 1.5 // @Increment: 0.05 // @User: User AP_GROUPINFO("RLL", 6, AP_PitchController, _roll_ff, 1.0f), // @Param: IMAX // @DisplayName: Integrator limit // @Description: Limit of pitch integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 3000 allows trim of up to 2/3 of servo travel range. // @Range: 0 4500 // @Increment: 1 // @User: Advanced AP_GROUPINFO("IMAX", 7, AP_PitchController, gains.imax, 3000), // @Param: FF // @DisplayName: Feed forward Gain // @Description: Gain from demanded rate to elevator output. // @Range: 0.1 4.0 // @Increment: 0.1 // @User: User AP_GROUPINFO("FF", 8, AP_PitchController, gains.FF, 0.0f), AP_GROUPEND }; /* Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500 A positive demand is up Inputs are: 1) demanded pitch rate in degrees/second 2) control gain scaler = scaling_speed / aspeed 3) boolean which is true when stabilise mode is active 4) minimum FBW airspeed (metres/sec) 5) maximum FBW airspeed (metres/sec) */ int32_t AP_PitchController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator, float aspeed) { uint32_t tnow = AP_HAL::millis(); uint32_t dt = tnow - _last_t; if (_last_t == 0 || dt > 1000) { dt = 0; } _last_t = tnow; float delta_time = (float)dt * 0.001f; // Get body rate vector (radians/sec) float omega_y = _ahrs.get_gyro().y; // Calculate the pitch rate error (deg/sec) and scale float achieved_rate = ToDeg(omega_y); float rate_error = (desired_rate - achieved_rate) * scaler; // Multiply pitch rate error by _ki_rate and integrate // Scaler is applied before integrator so that integrator state relates directly to elevator deflection // This means elevator trim offset doesn't change as the value of scaler changes with airspeed // Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs if (!disable_integrator && gains.I > 0) { float k_I = gains.I; if (is_zero(gains.FF)) { /* if the user hasn't set a direct FF then assume they are not doing sophisticated tuning. Set a minimum I value of 0.15 to ensure that the time constant for trimming in pitch is not too long. We have had a lot of user issues with very small I value leading to very slow pitch trimming, which causes a lot of problems for TECS. A value of 0.15 is still quite small, but a lot better than what many users are running. */ k_I = MAX(k_I, 0.15f); } float ki_rate = k_I * gains.tau; //only integrate if gain and time step are positive and airspeed above min value. if (dt > 0 && aspeed > 0.5f*float(aparm.airspeed_min)) { float integrator_delta = rate_error * ki_rate * delta_time * scaler; if (_last_out < -45) { // prevent the integrator from increasing if surface defln demand is above the upper limit integrator_delta = MAX(integrator_delta , 0); } else if (_last_out > 45) { // prevent the integrator from decreasing if surface defln demand is below the lower limit integrator_delta = MIN(integrator_delta , 0); } _pid_info.I += integrator_delta; } } else { _pid_info.I = 0; } // Scale the integration limit float intLimScaled = gains.imax * 0.01f; // Constrain the integrator state _pid_info.I = constrain_float(_pid_info.I, -intLimScaled, intLimScaled); // Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law // No conversion is required for K_D float eas2tas = _ahrs.get_EAS2TAS(); float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D , 0) / eas2tas; float k_ff = gains.FF / eas2tas; // Calculate the demanded control surface deflection // Note the scaler is applied again. We want a 1/speed scaler applied to the feed-forward // path, but want a 1/speed^2 scaler applied to the rate error path. // This is because acceleration scales with speed^2, but rate scales with speed. _pid_info.P = desired_rate * kp_ff * scaler; _pid_info.FF = desired_rate * k_ff * scaler; _pid_info.D = rate_error * gains.D * scaler; _last_out = _pid_info.D + _pid_info.FF + _pid_info.P; _pid_info.desired = desired_rate; _pid_info.actual = achieved_rate; if (autotune.running && aspeed > aparm.airspeed_min) { // let autotune have a go at the values // Note that we don't pass the integrator component so we get // a better idea of how much the base PD controller // contributed autotune.update(desired_rate, achieved_rate, _last_out); // set down rate to rate up when auto-tuning _max_rate_neg.set_and_save_ifchanged(gains.rmax); } _last_out += _pid_info.I; /* when we are past the users defined roll limit for the aircraft our priority should be to bring the aircraft back within the roll limit. Using elevator for pitch control at large roll angles is ineffective, and can be counter productive as it induces earth-frame yaw which can reduce the ability to roll. We linearly reduce elevator input when beyond the configured roll limit, reducing to zero at 90 degrees */ float roll_wrapped = labs(_ahrs.roll_sensor); if (roll_wrapped > 9000) { roll_wrapped = 18000 - roll_wrapped; } if (roll_wrapped > aparm.roll_limit_cd + 500 && aparm.roll_limit_cd < 8500 && labs(_ahrs.pitch_sensor) < 7000) { float roll_prop = (roll_wrapped - (aparm.roll_limit_cd+500)) / (float)(9000 - aparm.roll_limit_cd); _last_out *= (1 - roll_prop); } // Convert to centi-degrees and constrain return constrain_float(_last_out * 100, -4500, 4500); } /* Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500 A positive demand is up Inputs are: 1) demanded pitch rate in degrees/second 2) control gain scaler = scaling_speed / aspeed 3) boolean which is true when stabilise mode is active 4) minimum FBW airspeed (metres/sec) 5) maximum FBW airspeed (metres/sec) */ int32_t AP_PitchController::get_rate_out(float desired_rate, float scaler) { float aspeed; if (!_ahrs.airspeed_estimate(&aspeed)) { // If no airspeed available use average of min and max aspeed = 0.5f*(float(aparm.airspeed_min) + float(aparm.airspeed_max)); } return _get_rate_out(desired_rate, scaler, false, aspeed); } /* get the rate offset in degrees/second needed for pitch in body frame to maintain height in a coordinated turn. Also returns the inverted flag and the estimated airspeed in m/s for use by the rest of the pitch controller */ float AP_PitchController::_get_coordination_rate_offset(float &aspeed, bool &inverted) const { float rate_offset; float bank_angle = _ahrs.roll; // limit bank angle between +- 80 deg if right way up if (fabsf(bank_angle) < radians(90)) { bank_angle = constrain_float(bank_angle,-radians(80),radians(80)); inverted = false; } else { inverted = true; if (bank_angle > 0.0f) { bank_angle = constrain_float(bank_angle,radians(100),radians(180)); } else { bank_angle = constrain_float(bank_angle,-radians(180),-radians(100)); } } if (!_ahrs.airspeed_estimate(&aspeed)) { // If no airspeed available use average of min and max aspeed = 0.5f*(float(aparm.airspeed_min) + float(aparm.airspeed_max)); } if (abs(_ahrs.pitch_sensor) > 7000) { // don't do turn coordination handling when at very high pitch angles rate_offset = 0; } else { rate_offset = cosf(_ahrs.pitch)*fabsf(ToDeg((GRAVITY_MSS / MAX((aspeed * _ahrs.get_EAS2TAS()) , float(aparm.airspeed_min))) * tanf(bank_angle) * sinf(bank_angle))) * _roll_ff; } if (inverted) { rate_offset = -rate_offset; } return rate_offset; } // Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500 // A positive demand is up // Inputs are: // 1) demanded pitch angle in centi-degrees // 2) control gain scaler = scaling_speed / aspeed // 3) boolean which is true when stabilise mode is active // 4) minimum FBW airspeed (metres/sec) // 5) maximum FBW airspeed (metres/sec) // int32_t AP_PitchController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator) { // Calculate offset to pitch rate demand required to maintain pitch angle whilst banking // Calculate ideal turn rate from bank angle and airspeed assuming a level coordinated turn // Pitch rate offset is the component of turn rate about the pitch axis float aspeed; float rate_offset; bool inverted; if (gains.tau < 0.1f) { gains.tau.set(0.1f); } rate_offset = _get_coordination_rate_offset(aspeed, inverted); // Calculate the desired pitch rate (deg/sec) from the angle error float desired_rate = angle_err * 0.01f / gains.tau; // limit the maximum pitch rate demand. Don't apply when inverted // as the rates will be tuned when upright, and it is common that // much higher rates are needed inverted if (!inverted) { if (_max_rate_neg && desired_rate < -_max_rate_neg) { desired_rate = -_max_rate_neg; } else if (gains.rmax && desired_rate > gains.rmax) { desired_rate = gains.rmax; } } if (inverted) { desired_rate = -desired_rate; } // Apply the turn correction offset desired_rate = desired_rate + rate_offset; return _get_rate_out(desired_rate, scaler, disable_integrator, aspeed); } void AP_PitchController::reset_I() { _pid_info.I = 0; }