// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" // This file contains the high-level takeoff logic for Loiter, PosHold, AltHold, Sport modes. // The take-off can be initiated from a GCS NAV_TAKEOFF command which includes a takeoff altitude // A safe takeoff speed is calculated and used to calculate a time_ms // the pos_control target is then slowly increased until time_ms expires // return true if this flight mode supports user takeoff // must_nagivate is true if mode must also control horizontal position bool Copter::current_mode_has_user_takeoff(bool must_navigate) { switch (control_mode) { case GUIDED: case LOITER: case POSHOLD: return true; case ALT_HOLD: case SPORT: return !must_navigate; default: return false; } } // initiate user takeoff - called when MAVLink TAKEOFF command is received bool Copter::do_user_takeoff(float takeoff_alt_cm, bool must_navigate) { if (motors.armed() && ap.land_complete && current_mode_has_user_takeoff(must_navigate) && takeoff_alt_cm > current_loc.alt) { #if FRAME_CONFIG == HELI_FRAME // Helicopters should return false if MAVlink takeoff command is received while the rotor is not spinning if (!motors.rotor_runup_complete()) { return false; } #endif switch(control_mode) { case GUIDED: set_auto_armed(true); guided_takeoff_start(takeoff_alt_cm); return true; case LOITER: case POSHOLD: case ALT_HOLD: case SPORT: set_auto_armed(true); takeoff_timer_start(takeoff_alt_cm); return true; } } return false; } // start takeoff to specified altitude above home in centimeters void Copter::takeoff_timer_start(float alt_cm) { // calculate climb rate float speed = min(wp_nav.get_speed_up(), max(g.pilot_velocity_z_max*2.0f/3.0f, g.pilot_velocity_z_max-50.0f)); // sanity check speed and target if (takeoff_state.running || speed <= 0.0f || alt_cm <= 0.0f) { return; } // initialise takeoff state takeoff_state.running = true; takeoff_state.speed = speed; takeoff_state.start_ms = millis(); takeoff_state.time_ms = (alt_cm/takeoff_state.speed) * 1.0e3f; } // stop takeoff void Copter::takeoff_stop() { takeoff_state.running = false; takeoff_state.start_ms = 0; } // returns pilot and takeoff climb rates // pilot_climb_rate is both an input and an output // takeoff_climb_rate is only an output // has side-effect of turning takeoff off when timeout as expired void Copter::takeoff_get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate) { // return pilot_climb_rate if take-off inactive if (!takeoff_state.running) { takeoff_climb_rate = 0.0f; return; } // check if timeout as expired if ((millis()-takeoff_state.start_ms) >= takeoff_state.time_ms) { takeoff_stop(); takeoff_climb_rate = 0.0f; return; } // if takeoff climb rate is zero return if (takeoff_state.speed <= 0.0f) { takeoff_climb_rate = 0.0f; return; } // default take-off climb rate to maximum speed takeoff_climb_rate = takeoff_state.speed; // if pilot's commands descent if (pilot_climb_rate < 0.0f) { // if overall climb rate is still positive, move to take-off climb rate if (takeoff_climb_rate + pilot_climb_rate > 0.0f) { takeoff_climb_rate = takeoff_climb_rate + pilot_climb_rate; pilot_climb_rate = 0; } else { // if overall is negative, move to pilot climb rate pilot_climb_rate = pilot_climb_rate + takeoff_climb_rate; takeoff_climb_rate = 0.0f; } } else { // pilot commands climb // pilot climb rate is zero until it surpasses the take-off climb rate if (pilot_climb_rate > takeoff_climb_rate) { pilot_climb_rate = pilot_climb_rate - takeoff_climb_rate; } else { pilot_climb_rate = 0.0f; } } }