#ifndef _MAVLINK_HELPERS_H_ #define _MAVLINK_HELPERS_H_ #include "string.h" #include "checksum.h" #include "mavlink_types.h" #ifndef MAVLINK_HELPER #define MAVLINK_HELPER #endif /* * Internal function to give access to the channel status for each channel */ #ifndef MAVLINK_GET_CHANNEL_STATUS MAVLINK_HELPER mavlink_status_t* mavlink_get_channel_status(uint8_t chan) { static mavlink_status_t m_mavlink_status[MAVLINK_COMM_NUM_BUFFERS]; return &m_mavlink_status[chan]; } #endif /* * Internal function to give access to the channel buffer for each channel */ #ifndef MAVLINK_GET_CHANNEL_BUFFER MAVLINK_HELPER mavlink_message_t* mavlink_get_channel_buffer(uint8_t chan) { #if MAVLINK_EXTERNAL_RX_BUFFER // No m_mavlink_message array defined in function, // has to be defined externally #ifndef m_mavlink_message #error ERROR: IF #define MAVLINK_EXTERNAL_RX_BUFFER IS SET, THE BUFFER HAS TO BE ALLOCATED OUTSIDE OF THIS FUNCTION (mavlink_message_t m_mavlink_buffer[MAVLINK_COMM_NUM_BUFFERS];) #endif #else static mavlink_message_t m_mavlink_buffer[MAVLINK_COMM_NUM_BUFFERS]; #endif return &m_mavlink_buffer[chan]; } #endif /** * @brief Reset the status of a channel. */ MAVLINK_HELPER void mavlink_reset_channel_status(uint8_t chan) { mavlink_status_t *status = mavlink_get_channel_status(chan); status->parse_state = MAVLINK_PARSE_STATE_IDLE; } /** * @brief Finalize a MAVLink message with channel assignment * * This function calculates the checksum and sets length and aircraft id correctly. * It assumes that the message id and the payload are already correctly set. This function * can also be used if the message header has already been written before (as in mavlink_msg_xxx_pack * instead of mavlink_msg_xxx_pack_headerless), it just introduces little extra overhead. * * @param msg Message to finalize * @param system_id Id of the sending (this) system, 1-127 * @param length Message length */ #if MAVLINK_CRC_EXTRA MAVLINK_HELPER uint16_t mavlink_finalize_message_chan(mavlink_message_t* msg, uint8_t system_id, uint8_t component_id, uint8_t chan, uint8_t length, uint8_t crc_extra) #else MAVLINK_HELPER uint16_t mavlink_finalize_message_chan(mavlink_message_t* msg, uint8_t system_id, uint8_t component_id, uint8_t chan, uint8_t length) #endif { // This code part is the same for all messages; uint16_t checksum; msg->magic = MAVLINK_STX; msg->len = length; msg->sysid = system_id; msg->compid = component_id; // One sequence number per component msg->seq = mavlink_get_channel_status(chan)->current_tx_seq; mavlink_get_channel_status(chan)->current_tx_seq = mavlink_get_channel_status(chan)->current_tx_seq+1; checksum = crc_calculate((uint8_t*)&msg->len, length + MAVLINK_CORE_HEADER_LEN); #if MAVLINK_CRC_EXTRA crc_accumulate(crc_extra, &checksum); #endif mavlink_ck_a(msg) = (uint8_t)(checksum & 0xFF); mavlink_ck_b(msg) = (uint8_t)(checksum >> 8); return length + MAVLINK_NUM_NON_PAYLOAD_BYTES; } /** * @brief Finalize a MAVLink message with MAVLINK_COMM_0 as default channel */ #if MAVLINK_CRC_EXTRA MAVLINK_HELPER uint16_t mavlink_finalize_message(mavlink_message_t* msg, uint8_t system_id, uint8_t component_id, uint8_t length, uint8_t crc_extra) { return mavlink_finalize_message_chan(msg, system_id, component_id, MAVLINK_COMM_0, length, crc_extra); } #else MAVLINK_HELPER uint16_t mavlink_finalize_message(mavlink_message_t* msg, uint8_t system_id, uint8_t component_id, uint8_t length) { return mavlink_finalize_message_chan(msg, system_id, component_id, MAVLINK_COMM_0, length); } #endif #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS MAVLINK_HELPER void _mavlink_send_uart(mavlink_channel_t chan, const char *buf, uint16_t len); /** * @brief Finalize a MAVLink message with channel assignment and send */ #if MAVLINK_CRC_EXTRA MAVLINK_HELPER void _mav_finalize_message_chan_send(mavlink_channel_t chan, uint8_t msgid, const char *packet, uint8_t length, uint8_t crc_extra) #else MAVLINK_HELPER void _mav_finalize_message_chan_send(mavlink_channel_t chan, uint8_t msgid, const char *packet, uint8_t length) #endif { uint16_t checksum; uint8_t buf[MAVLINK_NUM_HEADER_BYTES]; uint8_t ck[2]; mavlink_status_t *status = mavlink_get_channel_status(chan); buf[0] = MAVLINK_STX; buf[1] = length; buf[2] = status->current_tx_seq; buf[3] = mavlink_system.sysid; buf[4] = mavlink_system.compid; buf[5] = msgid; status->current_tx_seq++; checksum = crc_calculate((uint8_t*)&buf[1], MAVLINK_CORE_HEADER_LEN); crc_accumulate_buffer(&checksum, packet, length); #if MAVLINK_CRC_EXTRA crc_accumulate(crc_extra, &checksum); #endif ck[0] = (uint8_t)(checksum & 0xFF); ck[1] = (uint8_t)(checksum >> 8); MAVLINK_START_UART_SEND(chan, MAVLINK_NUM_NON_PAYLOAD_BYTES + (uint16_t)length); _mavlink_send_uart(chan, (const char *)buf, MAVLINK_NUM_HEADER_BYTES); _mavlink_send_uart(chan, packet, length); _mavlink_send_uart(chan, (const char *)ck, 2); MAVLINK_END_UART_SEND(chan, MAVLINK_NUM_NON_PAYLOAD_BYTES + (uint16_t)length); } /** * @brief re-send a message over a uart channel * this is more stack efficient than re-marshalling the message */ MAVLINK_HELPER void _mavlink_resend_uart(mavlink_channel_t chan, const mavlink_message_t *msg) { uint8_t ck[2]; ck[0] = (uint8_t)(msg->checksum & 0xFF); ck[1] = (uint8_t)(msg->checksum >> 8); MAVLINK_START_UART_SEND(chan, MAVLINK_NUM_NON_PAYLOAD_BYTES + msg->len); _mavlink_send_uart(chan, (const char *)&msg->magic, MAVLINK_NUM_HEADER_BYTES); _mavlink_send_uart(chan, _MAV_PAYLOAD(msg), msg->len); _mavlink_send_uart(chan, (const char *)ck, 2); MAVLINK_END_UART_SEND(chan, MAVLINK_NUM_NON_PAYLOAD_BYTES + msg->len); } #endif // MAVLINK_USE_CONVENIENCE_FUNCTIONS /** * @brief Pack a message to send it over a serial byte stream */ MAVLINK_HELPER uint16_t mavlink_msg_to_send_buffer(uint8_t *buffer, const mavlink_message_t *msg) { memcpy(buffer, (const uint8_t *)&msg->magic, MAVLINK_NUM_NON_PAYLOAD_BYTES + (uint16_t)msg->len); return MAVLINK_NUM_NON_PAYLOAD_BYTES + (uint16_t)msg->len; } union __mavlink_bitfield { uint8_t uint8; int8_t int8; uint16_t uint16; int16_t int16; uint32_t uint32; int32_t int32; }; MAVLINK_HELPER void mavlink_start_checksum(mavlink_message_t* msg) { crc_init(&msg->checksum); } MAVLINK_HELPER void mavlink_update_checksum(mavlink_message_t* msg, uint8_t c) { crc_accumulate(c, &msg->checksum); } /** * This is a convenience function which handles the complete MAVLink parsing. * the function will parse one byte at a time and return the complete packet once * it could be successfully decoded. Checksum and other failures will be silently * ignored. * * @param chan ID of the current channel. This allows to parse different channels with this function. * a channel is not a physical message channel like a serial port, but a logic partition of * the communication streams in this case. COMM_NB is the limit for the number of channels * on MCU (e.g. ARM7), while COMM_NB_HIGH is the limit for the number of channels in Linux/Windows * @param c The char to barse * * @param returnMsg NULL if no message could be decoded, the message data else * @return 0 if no message could be decoded, 1 else * * A typical use scenario of this function call is: * * @code * #include // For fixed-width uint8_t type * * mavlink_message_t msg; * int chan = 0; * * * while(serial.bytesAvailable > 0) * { * uint8_t byte = serial.getNextByte(); * if (mavlink_parse_char(chan, byte, &msg)) * { * printf("Received message with ID %d, sequence: %d from component %d of system %d", msg.msgid, msg.seq, msg.compid, msg.sysid); * } * } * * * @endcode */ MAVLINK_HELPER uint8_t mavlink_parse_char(uint8_t chan, uint8_t c, mavlink_message_t* r_message, mavlink_status_t* r_mavlink_status) { /* default message crc function. You can override this per-system to put this data in a different memory segment */ #if MAVLINK_CRC_EXTRA #ifndef MAVLINK_MESSAGE_CRC static const uint8_t mavlink_message_crcs[256] = MAVLINK_MESSAGE_CRCS; #define MAVLINK_MESSAGE_CRC(msgid) mavlink_message_crcs[msgid] #endif #endif /* Enable this option to check the length of each message. This allows invalid messages to be caught much sooner. Use if the transmission medium is prone to missing (or extra) characters (e.g. a radio that fades in and out). Only use if the channel will only contain messages types listed in the headers. */ #if MAVLINK_CHECK_MESSAGE_LENGTH #ifndef MAVLINK_MESSAGE_LENGTH static const uint8_t mavlink_message_lengths[256] = MAVLINK_MESSAGE_LENGTHS; #define MAVLINK_MESSAGE_LENGTH(msgid) mavlink_message_lengths[msgid] #endif #endif mavlink_message_t* rxmsg = mavlink_get_channel_buffer(chan); ///< The currently decoded message mavlink_status_t* status = mavlink_get_channel_status(chan); ///< The current decode status int bufferIndex = 0; status->msg_received = 0; switch (status->parse_state) { case MAVLINK_PARSE_STATE_UNINIT: case MAVLINK_PARSE_STATE_IDLE: if (c == MAVLINK_STX) { status->parse_state = MAVLINK_PARSE_STATE_GOT_STX; rxmsg->len = 0; rxmsg->magic = c; mavlink_start_checksum(rxmsg); } break; case MAVLINK_PARSE_STATE_GOT_STX: if (status->msg_received /* Support shorter buffers than the default maximum packet size */ #if (MAVLINK_MAX_PAYLOAD_LEN < 255) || c > MAVLINK_MAX_PAYLOAD_LEN #endif ) { status->buffer_overrun++; status->parse_error++; status->msg_received = 0; status->parse_state = MAVLINK_PARSE_STATE_IDLE; } else { // NOT counting STX, LENGTH, SEQ, SYSID, COMPID, MSGID, CRC1 and CRC2 rxmsg->len = c; status->packet_idx = 0; mavlink_update_checksum(rxmsg, c); status->parse_state = MAVLINK_PARSE_STATE_GOT_LENGTH; } break; case MAVLINK_PARSE_STATE_GOT_LENGTH: rxmsg->seq = c; mavlink_update_checksum(rxmsg, c); status->parse_state = MAVLINK_PARSE_STATE_GOT_SEQ; break; case MAVLINK_PARSE_STATE_GOT_SEQ: rxmsg->sysid = c; mavlink_update_checksum(rxmsg, c); status->parse_state = MAVLINK_PARSE_STATE_GOT_SYSID; break; case MAVLINK_PARSE_STATE_GOT_SYSID: rxmsg->compid = c; mavlink_update_checksum(rxmsg, c); status->parse_state = MAVLINK_PARSE_STATE_GOT_COMPID; break; case MAVLINK_PARSE_STATE_GOT_COMPID: #if MAVLINK_CHECK_MESSAGE_LENGTH if (rxmsg->len != MAVLINK_MESSAGE_LENGTH(c)) { status->parse_error++; status->parse_state = MAVLINK_PARSE_STATE_IDLE; break; if (c == MAVLINK_STX) { status->parse_state = MAVLINK_PARSE_STATE_GOT_STX; mavlink_start_checksum(rxmsg); } } #endif rxmsg->msgid = c; mavlink_update_checksum(rxmsg, c); if (rxmsg->len == 0) { status->parse_state = MAVLINK_PARSE_STATE_GOT_PAYLOAD; } else { status->parse_state = MAVLINK_PARSE_STATE_GOT_MSGID; } break; case MAVLINK_PARSE_STATE_GOT_MSGID: _MAV_PAYLOAD_NON_CONST(rxmsg)[status->packet_idx++] = (char)c; mavlink_update_checksum(rxmsg, c); if (status->packet_idx == rxmsg->len) { status->parse_state = MAVLINK_PARSE_STATE_GOT_PAYLOAD; } break; case MAVLINK_PARSE_STATE_GOT_PAYLOAD: #if MAVLINK_CRC_EXTRA mavlink_update_checksum(rxmsg, MAVLINK_MESSAGE_CRC(rxmsg->msgid)); #endif if (c != (rxmsg->checksum & 0xFF)) { // Check first checksum byte status->parse_error++; status->msg_received = 0; status->parse_state = MAVLINK_PARSE_STATE_IDLE; if (c == MAVLINK_STX) { status->parse_state = MAVLINK_PARSE_STATE_GOT_STX; rxmsg->len = 0; mavlink_start_checksum(rxmsg); } } else { status->parse_state = MAVLINK_PARSE_STATE_GOT_CRC1; _MAV_PAYLOAD_NON_CONST(rxmsg)[status->packet_idx] = (char)c; } break; case MAVLINK_PARSE_STATE_GOT_CRC1: if (c != (rxmsg->checksum >> 8)) { // Check second checksum byte status->parse_error++; status->msg_received = 0; status->parse_state = MAVLINK_PARSE_STATE_IDLE; if (c == MAVLINK_STX) { status->parse_state = MAVLINK_PARSE_STATE_GOT_STX; rxmsg->len = 0; mavlink_start_checksum(rxmsg); } } else { // Successfully got message status->msg_received = 1; status->parse_state = MAVLINK_PARSE_STATE_IDLE; _MAV_PAYLOAD_NON_CONST(rxmsg)[status->packet_idx+1] = (char)c; memcpy(r_message, rxmsg, sizeof(mavlink_message_t)); } break; } bufferIndex++; // If a message has been sucessfully decoded, check index if (status->msg_received == 1) { //while(status->current_seq != rxmsg->seq) //{ // status->packet_rx_drop_count++; // status->current_seq++; //} status->current_rx_seq = rxmsg->seq; // Initial condition: If no packet has been received so far, drop count is undefined if (status->packet_rx_success_count == 0) status->packet_rx_drop_count = 0; // Count this packet as received status->packet_rx_success_count++; } r_mavlink_status->current_rx_seq = status->current_rx_seq+1; r_mavlink_status->packet_rx_success_count = status->packet_rx_success_count; r_mavlink_status->packet_rx_drop_count = status->parse_error; status->parse_error = 0; return status->msg_received; } /** * @brief Put a bitfield of length 1-32 bit into the buffer * * @param b the value to add, will be encoded in the bitfield * @param bits number of bits to use to encode b, e.g. 1 for boolean, 2, 3, etc. * @param packet_index the position in the packet (the index of the first byte to use) * @param bit_index the position in the byte (the index of the first bit to use) * @param buffer packet buffer to write into * @return new position of the last used byte in the buffer */ MAVLINK_HELPER uint8_t put_bitfield_n_by_index(int32_t b, uint8_t bits, uint8_t packet_index, uint8_t bit_index, uint8_t* r_bit_index, uint8_t* buffer) { uint16_t bits_remain = bits; // Transform number into network order int32_t v; uint8_t i_bit_index, i_byte_index, curr_bits_n; #if MAVLINK_NEED_BYTE_SWAP union { int32_t i; uint8_t b[4]; } bin, bout; bin.i = b; bout.b[0] = bin.b[3]; bout.b[1] = bin.b[2]; bout.b[2] = bin.b[1]; bout.b[3] = bin.b[0]; v = bout.i; #else v = b; #endif // buffer in // 01100000 01000000 00000000 11110001 // buffer out // 11110001 00000000 01000000 01100000 // Existing partly filled byte (four free slots) // 0111xxxx // Mask n free bits // 00001111 = 2^0 + 2^1 + 2^2 + 2^3 = 2^n - 1 // = ((uint32_t)(1 << n)) - 1; // = 2^n - 1 // Shift n bits into the right position // out = in >> n; // Mask and shift bytes i_bit_index = bit_index; i_byte_index = packet_index; if (bit_index > 0) { // If bits were available at start, they were available // in the byte before the current index i_byte_index--; } // While bits have not been packed yet while (bits_remain > 0) { // Bits still have to be packed // there can be more than 8 bits, so // we might have to pack them into more than one byte // First pack everything we can into the current 'open' byte //curr_bits_n = bits_remain << 3; // Equals bits_remain mod 8 //FIXME if (bits_remain <= (uint8_t)(8 - i_bit_index)) { // Enough space curr_bits_n = (uint8_t)bits_remain; } else { curr_bits_n = (8 - i_bit_index); } // Pack these n bits into the current byte // Mask out whatever was at that position with ones (xxx11111) buffer[i_byte_index] &= (0xFF >> (8 - curr_bits_n)); // Put content to this position, by masking out the non-used part buffer[i_byte_index] |= ((0x00 << curr_bits_n) & v); // Increment the bit index i_bit_index += curr_bits_n; // Now proceed to the next byte, if necessary bits_remain -= curr_bits_n; if (bits_remain > 0) { // Offer another 8 bits / one byte i_byte_index++; i_bit_index = 0; } } *r_bit_index = i_bit_index; // If a partly filled byte is present, mark this as consumed if (i_bit_index != 7) i_byte_index++; return i_byte_index - packet_index; } #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS // To make MAVLink work on your MCU, define comm_send_ch() if you wish // to send 1 byte at a time, or MAVLINK_SEND_UART_BYTES() to send a // whole packet at a time /* #include "mavlink_types.h" void comm_send_ch(mavlink_channel_t chan, uint8_t ch) { if (chan == MAVLINK_COMM_0) { uart0_transmit(ch); } if (chan == MAVLINK_COMM_1) { uart1_transmit(ch); } } */ MAVLINK_HELPER void _mavlink_send_uart(mavlink_channel_t chan, const char *buf, uint16_t len) { #ifdef MAVLINK_SEND_UART_BYTES /* this is the more efficient approach, if the platform defines it */ MAVLINK_SEND_UART_BYTES(chan, (const uint8_t *)buf, len); #else /* fallback to one byte at a time */ uint16_t i; for (i = 0; i < len; i++) { comm_send_ch(chan, (uint8_t)buf[i]); } #endif } #endif // MAVLINK_USE_CONVENIENCE_FUNCTIONS #endif /* _MAVLINK_HELPERS_H_ */