#include "Rover.h" void ModeSteering::update() { // get speed forward float speed; if (!attitude_control.get_forward_speed(speed)) { // no valid speed so stop g2.motors.set_throttle(0.0f); g2.motors.set_steering(0.0f); _desired_lat_accel = 0.0f; return; } float desired_steering, desired_speed; get_pilot_desired_steering_and_speed(desired_steering, desired_speed); bool reversed = is_negative(desired_speed); // determine if pilot is requesting pivot turn if (g2.motors.have_skid_steering() && is_zero(desired_speed)) { // pivot turning using turn rate controller // convert pilot steering input to desired turn rate in radians/sec const float target_turn_rate = (desired_steering / 4500.0f) * radians(g2.acro_turn_rate); _desired_lat_accel = 0.0f; // run steering turn rate controller and throttle controller const float steering_out = attitude_control.get_steering_out_rate(target_turn_rate, g2.motors.limit.steer_left, g2.motors.limit.steer_right, rover.G_Dt); set_steering(steering_out * 4500.0f); } else { // In steering mode we control lateral acceleration directly. // For regular steering vehicles we use the maximum lateral acceleration // at full steering lock for this speed: V^2/R where R is the radius of turn. float max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f); max_g_force = constrain_float(max_g_force, 0.1f, attitude_control.get_turn_lat_accel_max()); // convert pilot steering input to desired lateral acceleration _desired_lat_accel = max_g_force * (desired_steering / 4500.0f); // reverse target lateral acceleration if backing up if (reversed) { _desired_lat_accel = -_desired_lat_accel; } // run lateral acceleration to steering controller calc_steering_from_lateral_acceleration(_desired_lat_accel, reversed); } // run speed to throttle controller calc_throttle(desired_speed, true); }