#pragma once #include #include #include #include #include #include "AP_BattMonitor_Params.h" // maximum number of battery monitors #ifndef AP_BATT_MONITOR_MAX_INSTANCES #define AP_BATT_MONITOR_MAX_INSTANCES 9 #endif // first monitor is always the primary monitor #define AP_BATT_PRIMARY_INSTANCE 0 #define AP_BATT_SERIAL_NUMBER_DEFAULT -1 #define AP_BATT_MONITOR_TIMEOUT 5000 #define AP_BATT_MONITOR_RES_EST_TC_1 0.5f #define AP_BATT_MONITOR_RES_EST_TC_2 0.1f #if !HAL_MINIMIZE_FEATURES && BOARD_FLASH_SIZE > 1024 #define AP_BATT_MONITOR_CELLS_MAX 14 #else #define AP_BATT_MONITOR_CELLS_MAX 12 #endif #ifndef AP_BATTMON_SMBUS_ENABLE #define AP_BATTMON_SMBUS_ENABLE 1 #endif #ifndef AP_BATTMON_FUELFLOW_ENABLE #define AP_BATTMON_FUELFLOW_ENABLE (BOARD_FLASH_SIZE > 1024) #endif #ifndef AP_BATTMON_FUELLEVEL_PWM_ENABLE #define AP_BATTMON_FUELLEVEL_PWM_ENABLE (BOARD_FLASH_SIZE > 1024) #endif #ifndef AP_BATTMON_FUELLEVEL_ANALOG_ENABLE #define AP_BATTMON_FUELLEVEL_ANALOG_ENABLE (BOARD_FLASH_SIZE > 1024) #endif #ifndef AP_BATTMON_SYNTHETIC_CURRENT_ENABLED #define AP_BATTMON_SYNTHETIC_CURRENT_ENABLED 1 #endif // declare backend class class AP_BattMonitor_Backend; class AP_BattMonitor_Analog; class AP_BattMonitor_SMBus; class AP_BattMonitor_SMBus_Solo; class AP_BattMonitor_SMBus_Generic; class AP_BattMonitor_SMBus_Maxell; class AP_BattMonitor_SMBus_Rotoye; class AP_BattMonitor_UAVCAN; class AP_BattMonitor_Generator; class AP_BattMonitor_INA2XX; class AP_BattMonitor_LTC2946; class AP_BattMonitor_Torqeedo; class AP_BattMonitor_FuelLevel_Analog; class AP_BattMonitor { friend class AP_BattMonitor_Backend; friend class AP_BattMonitor_Analog; friend class AP_BattMonitor_SMBus; friend class AP_BattMonitor_SMBus_Solo; friend class AP_BattMonitor_SMBus_Generic; friend class AP_BattMonitor_SMBus_Maxell; friend class AP_BattMonitor_SMBus_Rotoye; friend class AP_BattMonitor_UAVCAN; friend class AP_BattMonitor_Sum; friend class AP_BattMonitor_FuelFlow; friend class AP_BattMonitor_FuelLevel_PWM; friend class AP_BattMonitor_Generator; friend class AP_BattMonitor_INA2XX; friend class AP_BattMonitor_LTC2946; friend class AP_BattMonitor_Torqeedo; friend class AP_BattMonitor_FuelLevel_Analog; friend class AP_BattMonitor_Synthetic_Current; public: // battery failsafes must be defined in levels of severity so that vehicles wont fall backwards enum class Failsafe : uint8_t { None = 0, Low, Critical }; // Battery monitor driver types enum class Type { NONE = 0, ANALOG_VOLTAGE_ONLY = 3, ANALOG_VOLTAGE_AND_CURRENT = 4, SOLO = 5, BEBOP = 6, SMBus_Generic = 7, UAVCAN_BatteryInfo = 8, BLHeliESC = 9, Sum = 10, FuelFlow = 11, FuelLevel_PWM = 12, SUI3 = 13, SUI6 = 14, NeoDesign = 15, MAXELL = 16, GENERATOR_ELEC = 17, GENERATOR_FUEL = 18, Rotoye = 19, // 20 was MPPT_PacketDigital INA2XX = 21, LTC2946 = 22, Torqeedo = 23, FuelLevel_Analog = 24, Analog_Volt_Synthetic_Current = 25, }; FUNCTOR_TYPEDEF(battery_failsafe_handler_fn_t, void, const char *, const int8_t); AP_BattMonitor(uint32_t log_battery_bit, battery_failsafe_handler_fn_t battery_failsafe_handler_fn, const int8_t *failsafe_priorities); /* Do not allow copies */ CLASS_NO_COPY(AP_BattMonitor); static AP_BattMonitor *get_singleton() { return _singleton; } // cell voltages in millivolts struct cells { uint16_t cells[AP_BATT_MONITOR_CELLS_MAX]; }; // The BattMonitor_State structure is filled in by the backend driver struct BattMonitor_State { cells cell_voltages; // battery cell voltages in millivolts, 10 cells matches the MAVLink spec float voltage; // voltage in volts float current_amps; // current in amperes float consumed_mah; // total current draw in milliamp hours since start-up float consumed_wh; // total energy consumed in Wh since start-up uint32_t last_time_micros; // time when voltage and current was last read in microseconds uint32_t low_voltage_start_ms; // time when voltage dropped below the minimum in milliseconds uint32_t critical_voltage_start_ms; // critical voltage failsafe start timer in milliseconds float temperature; // battery temperature in degrees Celsius #if AP_TEMPERATURE_SENSOR_ENABLED bool temperature_external_use; float temperature_external; // battery temperature set by an external source in degrees Celsius #endif uint32_t temperature_time; // timestamp of the last received temperature message float voltage_resting_estimate; // voltage with sag removed based on current and resistance estimate in Volt float resistance; // resistance, in Ohms, calculated by comparing resting voltage vs in flight voltage Failsafe failsafe; // stage failsafe the battery is in bool healthy; // battery monitor is communicating correctly bool is_powering_off; // true when power button commands power off bool powerOffNotified; // only send powering off notification once uint32_t time_remaining; // remaining battery time bool has_time_remaining; // time_remaining is only valid if this is true const struct AP_Param::GroupInfo *var_info; }; static const struct AP_Param::GroupInfo *backend_var_info[AP_BATT_MONITOR_MAX_INSTANCES]; // Return the number of battery monitor instances uint8_t num_instances(void) const { return _num_instances; } // detect and initialise any available battery monitors void init(); /// Read the battery voltage and current for all batteries. Should be called at 10hz void read(); // healthy - returns true if monitor is functioning bool healthy(uint8_t instance) const; // return true if all configured battery monitors are healthy bool healthy() const; /// voltage - returns battery voltage in volts float voltage(uint8_t instance) const; float voltage() const { return voltage(AP_BATT_PRIMARY_INSTANCE); } // voltage for a GCS, may be resistance compensated float gcs_voltage(uint8_t instance) const; float gcs_voltage(void) const { return gcs_voltage(AP_BATT_PRIMARY_INSTANCE); } /// get voltage with sag removed (based on battery current draw and resistance) /// this will always be greater than or equal to the raw voltage float voltage_resting_estimate(uint8_t instance) const; float voltage_resting_estimate() const { return voltage_resting_estimate(AP_BATT_PRIMARY_INSTANCE); } /// current_amps - returns the instantaneous current draw in amperes bool current_amps(float ¤t, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED; /// consumed_mah - returns total current drawn since start-up in milliampere.hours bool consumed_mah(float &mah, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED; /// consumed_wh - returns total energy drawn since start-up in watt.hours bool consumed_wh(float&wh, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED; /// capacity_remaining_pct - returns true if the percentage is valid and writes to percentage argument virtual bool capacity_remaining_pct(uint8_t &percentage, uint8_t instance) const WARN_IF_UNUSED; bool capacity_remaining_pct(uint8_t &percentage) const WARN_IF_UNUSED { return capacity_remaining_pct(percentage, AP_BATT_PRIMARY_INSTANCE); } /// time_remaining - returns remaining battery time bool time_remaining(uint32_t &seconds, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED; /// pack_capacity_mah - returns the capacity of the battery pack in mAh when the pack is full int32_t pack_capacity_mah(uint8_t instance) const; int32_t pack_capacity_mah() const { return pack_capacity_mah(AP_BATT_PRIMARY_INSTANCE); } /// returns true if a battery failsafe has ever been triggered bool has_failsafed(void) const { return _has_triggered_failsafe; }; /// returns the highest failsafe action that has been triggered int8_t get_highest_failsafe_priority(void) const { return _highest_failsafe_priority; }; /// get_type - returns battery monitor type enum Type get_type() const { return get_type(AP_BATT_PRIMARY_INSTANCE); } enum Type get_type(uint8_t instance) const { return (Type)_params[instance]._type.get(); } /// get_serial_number - returns battery serial number int32_t get_serial_number() const { return get_serial_number(AP_BATT_PRIMARY_INSTANCE); } int32_t get_serial_number(uint8_t instance) const { return _params[instance]._serial_number; } /// true when (voltage * current) > watt_max bool overpower_detected() const; bool overpower_detected(uint8_t instance) const; // cell voltages in millivolts bool has_cell_voltages() const { return has_cell_voltages(AP_BATT_PRIMARY_INSTANCE); } bool has_cell_voltages(const uint8_t instance) const; const cells &get_cell_voltages() const { return get_cell_voltages(AP_BATT_PRIMARY_INSTANCE); } const cells &get_cell_voltages(const uint8_t instance) const; // temperature bool get_temperature(float &temperature) const { return get_temperature(temperature, AP_BATT_PRIMARY_INSTANCE); } bool get_temperature(float &temperature, const uint8_t instance) const; #if AP_TEMPERATURE_SENSOR_ENABLED bool set_temperature(const float temperature, const uint8_t instance); bool set_temperature_by_serial_number(const float temperature, const int32_t serial_number); #endif // cycle count bool get_cycle_count(uint8_t instance, uint16_t &cycles) const; // get battery resistance estimate in ohms float get_resistance() const { return get_resistance(AP_BATT_PRIMARY_INSTANCE); } float get_resistance(uint8_t instance) const { return state[instance].resistance; } // returns false if we fail arming checks, in which case the buffer will be populated with a failure message bool arming_checks(size_t buflen, char *buffer) const; // sends powering off mavlink broadcasts and sets notify flag void checkPoweringOff(void); // reset battery remaining percentage bool reset_remaining_mask(uint16_t battery_mask, float percentage); bool reset_remaining(uint8_t instance, float percentage) { return reset_remaining_mask(1U<