/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_BoardConfig - board specific configuration
*/
#include "AP_BoardConfig.h"
#include
#include
#include
#include
#include
#include
#include
#ifndef BOARD_TYPE_DEFAULT
#define BOARD_TYPE_DEFAULT PX4_BOARD_AUTO
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
# define BOARD_SAFETY_ENABLE_DEFAULT 1
#ifndef BOARD_PWM_COUNT_DEFAULT
# define BOARD_PWM_COUNT_DEFAULT 6
#endif
#ifndef BOARD_SER1_RTSCTS_DEFAULT
# define BOARD_SER1_RTSCTS_DEFAULT 2
#endif
#ifndef BOARD_TYPE_DEFAULT
# define BOARD_TYPE_DEFAULT PX4_BOARD_AUTO
#endif
#endif
#ifndef HAL_IMU_TEMP_DEFAULT
#define HAL_IMU_TEMP_DEFAULT -1 // disabled
#endif
#ifndef BOARD_SAFETY_OPTION_DEFAULT
# define BOARD_SAFETY_OPTION_DEFAULT (BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF|BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON)
#endif
#ifndef BOARD_SAFETY_ENABLE
# define BOARD_SAFETY_ENABLE 1
#endif
#ifndef BOARD_PWM_COUNT_DEFAULT
#define BOARD_PWM_COUNT_DEFAULT 8
#endif
#ifndef BOARD_CONFIG_BOARD_VOLTAGE_MIN
#define BOARD_CONFIG_BOARD_VOLTAGE_MIN 4.3f
#endif
#ifndef HAL_BRD_OPTIONS_DEFAULT
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && !APM_BUILD_TYPE(APM_BUILD_UNKNOWN) && !APM_BUILD_TYPE(APM_BUILD_Replay)
#define HAL_BRD_OPTIONS_DEFAULT BOARD_OPTION_WATCHDOG
#else
#define HAL_BRD_OPTIONS_DEFAULT 0
#endif
#endif
#ifndef HAL_DEFAULT_BOOT_DELAY
#define HAL_DEFAULT_BOOT_DELAY 0
#endif
extern const AP_HAL::HAL& hal;
AP_BoardConfig *AP_BoardConfig::_singleton;
// table of user settable parameters
const AP_Param::GroupInfo AP_BoardConfig::var_info[] = {
// @Param: PWM_COUNT
// @DisplayName: Auxiliary pin config
// @Description: Controls number of FMU outputs which are setup for PWM. All unassigned pins can be used for GPIO
// @Values: 0:No PWMs,1:One PWMs,2:Two PWMs,3:Three PWMs,4:Four PWMs,5:Five PWMs,6:Six PWMs,7:Seven PWMs,8:Eight PWMs
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PWM_COUNT", 0, AP_BoardConfig, pwm_count, BOARD_PWM_COUNT_DEFAULT),
#if AP_FEATURE_RTSCTS
#ifdef HAL_HAVE_RTSCTS_SERIAL1
// @Param: SER1_RTSCTS
// @DisplayName: Serial 1 flow control
// @Description: Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER1_RTSCTS", 1, AP_BoardConfig, state.ser_rtscts[1], BOARD_SER1_RTSCTS_DEFAULT),
#endif
#ifdef HAL_HAVE_RTSCTS_SERIAL2
// @Param: SER2_RTSCTS
// @DisplayName: Serial 2 flow control
// @Description: Enable flow control on serial 2 (telemetry 2) on Pixhawk and STATE. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER2_RTSCTS", 2, AP_BoardConfig, state.ser_rtscts[2], 2),
#endif
#ifdef HAL_HAVE_RTSCTS_SERIAL3
// @Param: SER3_RTSCTS
// @DisplayName: Serial 3 flow control
// @Description: Enable flow control on serial 3. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER3_RTSCTS", 23, AP_BoardConfig, state.ser_rtscts[3], 2),
#endif
#ifdef HAL_HAVE_RTSCTS_SERIAL4
// @Param: SER4_RTSCTS
// @DisplayName: Serial 4 flow control
// @Description: Enable flow control on serial 4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER4_RTSCTS", 24, AP_BoardConfig, state.ser_rtscts[4], 2),
#endif
#ifdef HAL_HAVE_RTSCTS_SERIAL5
// @Param: SER5_RTSCTS
// @DisplayName: Serial 5 flow control
// @Description: Enable flow control on serial 5. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER5_RTSCTS", 25, AP_BoardConfig, state.ser_rtscts[5], 2),
#endif
#endif
#if HAL_HAVE_SAFETY_SWITCH
// @Param: SAFETYENABLE
// @DisplayName: Enable use of safety arming switch
// @Description: This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.
// @Values: 0:Disabled,1:Enabled
// @RebootRequired: True
// @User: Standard
AP_GROUPINFO("SAFETYENABLE", 3, AP_BoardConfig, state.safety_enable, BOARD_SAFETY_ENABLE_DEFAULT),
#endif
#if AP_FEATURE_SBUS_OUT
// @Param: SBUS_OUT
// @DisplayName: SBUS output rate
// @Description: This sets the SBUS output frame rate in Hz
// @Values: 0:Disabled,1:50Hz,2:75Hz,3:100Hz,4:150Hz,5:200Hz,6:250Hz,7:300Hz
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SBUS_OUT", 4, AP_BoardConfig, state.sbus_out_rate, 0),
#endif
// @Param: SERIAL_NUM
// @DisplayName: User-defined serial number
// @Description: User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot
// @Range: -32768 32767
// @User: Standard
AP_GROUPINFO("SERIAL_NUM", 5, AP_BoardConfig, vehicleSerialNumber, 0),
#if HAL_HAVE_SAFETY_SWITCH
// @Param: SAFETY_MASK
// @DisplayName: Outputs which ignore the safety switch state
// @Description: A bitmask which controls what outputs can move while the safety switch has not been pressed
// @Values: 0:Disabled,1:Enabled
// @Bitmask: 0:Output1,1:Output2,2:Output3,3:Output4,4:Output5,5:Output6,6:Output7,7:Output8,8:Output9,9:Output10,10:Output11,11:Output12,12:Output13,13:Output14
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SAFETY_MASK", 7, AP_BoardConfig, state.ignore_safety_channels, 0),
#endif
#if HAL_HAVE_IMU_HEATER
// @Param: IMU_TARGTEMP
// @DisplayName: Target IMU temperature
// @Description: This sets the target IMU temperature for boards with controllable IMU heating units. DO NOT SET -1 on The Cube. A value of -1 sets PH1 behaviour
// @Range: -1 80
// @Units: degC
// @User: Advanced
AP_GROUPINFO("IMU_TARGTEMP", 8, AP_BoardConfig, heater.imu_target_temperature, HAL_IMU_TEMP_DEFAULT),
#endif
#if AP_FEATURE_BOARD_DETECT
// @Param: TYPE
// @DisplayName: Board type
// @Description: This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)
// @Values: 0:AUTO,1:PX4V1,2:Pixhawk,3:Cube/Pixhawk2,4:Pixracer,5:PixhawkMini,6:Pixhawk2Slim,13:Intel Aero FC,14:Pixhawk Pro,20:AUAV2.1,21:PCNC1,22:MINDPXV2,23:SP01,24:CUAVv5/FMUV5,30:VRX BRAIN51,32:VRX BRAIN52,33:VRX BRAIN52E,34:VRX UBRAIN51,35:VRX UBRAIN52,36:VRX CORE10,38:VRX BRAIN54,39:PX4 FMUV6,100:PX4 OLDDRIVERS
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("TYPE", 9, AP_BoardConfig, state.board_type, BOARD_TYPE_DEFAULT),
#endif
#if HAL_WITH_IO_MCU
// @Param: IO_ENABLE
// @DisplayName: Enable IO co-processor
// @Description: This allows for the IO co-processor on FMUv1 and FMUv2 to be disabled
// @Values: 0:Disabled,1:Enabled
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("IO_ENABLE", 10, AP_BoardConfig, state.io_enable, 1),
#endif
#if HAL_RCINPUT_WITH_AP_RADIO
// @Group: RADIO
// @Path: ../AP_Radio/AP_Radio.cpp
AP_SUBGROUPINFO(_radio, "RADIO", 11, AP_BoardConfig, AP_Radio),
#endif
// @Param: SAFETYOPTION
// @DisplayName: Options for safety button behavior
// @Description: This controls the activation of the safety button. It allows you to control if the safety button can be used for safety enable and/or disable, and whether the button is only active when disarmed
// @Bitmask: 0:ActiveForSafetyEnable,1:ActiveForSafetyDisable,2:ActiveWhenArmed,3:Force safety on when the aircraft disarms
// @User: Standard
AP_GROUPINFO("SAFETYOPTION", 13, AP_BoardConfig, state.safety_option, BOARD_SAFETY_OPTION_DEFAULT),
// @Group: RTC
// @Path: ../AP_RTC/AP_RTC.cpp
AP_SUBGROUPINFO(rtc, "RTC", 14, AP_BoardConfig, AP_RTC),
#if HAL_HAVE_BOARD_VOLTAGE
// @Param: VBUS_MIN
// @DisplayName: Autopilot board voltage requirement
// @Description: Minimum voltage on the autopilot power rail to allow the aircraft to arm. 0 to disable the check.
// @Units: V
// @Range: 4.0 5.5
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO("VBUS_MIN", 15, AP_BoardConfig, _vbus_min, BOARD_CONFIG_BOARD_VOLTAGE_MIN),
#endif
#if HAL_HAVE_SERVO_VOLTAGE
// @Param: VSERVO_MIN
// @DisplayName: Servo voltage requirement
// @Description: Minimum voltage on the servo rail to allow the aircraft to arm. 0 to disable the check.
// @Units: V
// @Range: 3.3 12.0
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO("VSERVO_MIN", 16, AP_BoardConfig, _vservo_min, 0),
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
// @Param: SD_SLOWDOWN
// @DisplayName: microSD slowdown
// @Description: This is a scaling factor to slow down microSD operation. It can be used on flight board and microSD card combinations where full speed is not reliable. For normal full speed operation a value of 0 should be used.
// @Range: 0 32
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("SD_SLOWDOWN", 17, AP_BoardConfig, _sdcard_slowdown, 0),
#endif
#ifdef HAL_GPIO_PWM_VOLT_PIN
// @Param: PWM_VOLT_SEL
// @DisplayName: Set PWM Out Voltage
// @Description: This sets the voltage max for PWM output pulses. 0 for 3.3V and 1 for 5V output.
// @Values: 0:3.3V,1:5V
// @User: Advanced
AP_GROUPINFO("PWM_VOLT_SEL", 18, AP_BoardConfig, _pwm_volt_sel, 0),
#endif
// @Param: OPTIONS
// @DisplayName: Board options
// @Description: Board specific option flags
// @Bitmask: 0:Enable hardware watchdog, 1:Disable MAVftp
// @User: Advanced
AP_GROUPINFO("OPTIONS", 19, AP_BoardConfig, _options, HAL_BRD_OPTIONS_DEFAULT),
// @Param: BOOT_DELAY
// @DisplayName: Boot delay
// @Description: This adds a delay in milliseconds to boot to ensure peripherals initialise fully
// @Range: 0 10000
// @Units: ms
// @User: Advanced
AP_GROUPINFO("BOOT_DELAY", 20, AP_BoardConfig, _boot_delay_ms, HAL_DEFAULT_BOOT_DELAY),
#if HAL_HAVE_IMU_HEATER
// @Param: IMUHEAT_P
// @DisplayName: IMU Heater P gain
// @Description: IMU Heater P gain
// @Range: 1 500
// @Increment: 1
// @User: Advanced
// @Param: IMUHEAT_I
// @DisplayName: IMU Heater I gain
// @Description: IMU Heater integrator gain
// @Range: 0 1
// @Increment: 0.1
// @User: Advanced
// @Param: IMUHEAT_IMAX
// @DisplayName: IMU Heater IMAX
// @Description: IMU Heater integrator maximum
// @Range: 0 100
// @Increment: 1
// @User: Advanced
AP_SUBGROUPINFO(heater.pi_controller, "IMUHEAT_", 21, AP_BoardConfig, AC_PI),
#endif
// @Param: ALT_CONFIG
// @DisplayName: Alternative HW config
// @Description: Select an alternative hardware configuration. A value of zero selects the default configuration for this board. Other values are board specific. Please see the documentation for your board for details on any alternative configuration values that may be available.
// @Range: 0 10
// @Increment: 1
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("ALT_CONFIG", 22, AP_BoardConfig, _alt_config, 0),
AP_GROUPEND
};
void AP_BoardConfig::init()
{
board_setup();
AP::rtc().set_utc_usec(hal.util->get_hw_rtc(), AP_RTC::SOURCE_HW);
if (_boot_delay_ms > 0) {
uint16_t delay_ms = uint16_t(_boot_delay_ms.get());
if (hal.util->was_watchdog_armed() && delay_ms > 200) {
// don't delay a long time on watchdog reset, the pilot
// may be able to save the vehicle
delay_ms = 200;
}
hal.scheduler->delay(delay_ms);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && defined(USE_POSIX)
uint8_t slowdown = constrain_int16(_sdcard_slowdown.get(), 0, 32);
const uint8_t max_slowdown = 8;
do {
if (AP::FS().retry_mount()) {
break;
}
slowdown++;
hal.scheduler->delay(5);
} while (slowdown < max_slowdown);
if (slowdown < max_slowdown) {
_sdcard_slowdown.set(slowdown);
} else {
printf("SDCard failed to start\n");
}
#endif
}
// set default value for BRD_SAFETY_MASK
void AP_BoardConfig::set_default_safety_ignore_mask(uint16_t mask)
{
#if HAL_HAVE_SAFETY_SWITCH
state.ignore_safety_channels.set_default(mask);
#endif
}
void AP_BoardConfig::init_safety()
{
board_init_safety();
}
/*
notify user of a fatal startup error related to available sensors.
*/
bool AP_BoardConfig::_in_sensor_config_error;
void AP_BoardConfig::config_error(const char *fmt, ...)
{
_in_sensor_config_error = true;
/*
to give the user the opportunity to connect to USB we keep
repeating the error. The mavlink delay callback is initialised
before this, so the user can change parameters (and in
particular BRD_TYPE if needed)
*/
uint32_t last_print_ms = 0;
while (true) {
uint32_t now = AP_HAL::millis();
if (now - last_print_ms >= 5000) {
last_print_ms = now;
va_list arg_list;
char printfmt[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+2];
hal.util->snprintf(printfmt, sizeof(printfmt), "Config error: %s\n", fmt);
va_start(arg_list, fmt);
vprintf(printfmt, arg_list);
va_end(arg_list);
#if !APM_BUILD_TYPE(APM_BUILD_UNKNOWN) && !defined(HAL_BUILD_AP_PERIPH)
char taggedfmt[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1];
hal.util->snprintf(taggedfmt, sizeof(taggedfmt), "Config error: %s", fmt);
va_start(arg_list, fmt);
gcs().send_textv(MAV_SEVERITY_CRITICAL, taggedfmt, arg_list);
va_end(arg_list);
#endif
}
#if !APM_BUILD_TYPE(APM_BUILD_UNKNOWN) && !defined(HAL_BUILD_AP_PERIPH)
gcs().update_receive();
gcs().update_send();
#endif
hal.scheduler->delay(5);
}
}
/*
handle logic for safety state button press. This should be called at
10Hz when the button is pressed. The button can either be directly
on a pin or on a UAVCAN device
This function returns true if the safety state should be toggled
*/
bool AP_BoardConfig::safety_button_handle_pressed(uint8_t press_count)
{
if (press_count != 10) {
return false;
}
// get button options
uint16_t safety_options = get_safety_button_options();
if (!(safety_options & BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED) &&
hal.util->get_soft_armed()) {
return false;
}
AP_HAL::Util::safety_state safety_state = hal.util->safety_switch_state();
if (safety_state == AP_HAL::Util::SAFETY_DISARMED &&
!(safety_options & BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF)) {
return false;
}
if (safety_state == AP_HAL::Util::SAFETY_ARMED &&
!(safety_options & BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON)) {
return false;
}
return true;
}
namespace AP {
AP_BoardConfig *boardConfig(void) {
return AP_BoardConfig::get_singleton();
}
};