/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // /// @file AP_Param.h /// @brief A system for managing and storing variables that are of /// general interest to the system. #pragma once #include #include #include #include #include #include #include #include #include "AP_Param_config.h" #include "float.h" #define AP_MAX_NAME_SIZE 16 // optionally enable debug code for dumping keys #define AP_PARAM_KEY_DUMP 0 #if defined(HAL_GCS_ENABLED) #define AP_PARAM_DEFAULTS_ENABLED HAL_GCS_ENABLED #else #define AP_PARAM_DEFAULTS_ENABLED 1 #endif /* maximum size of embedded parameter file */ #ifndef AP_PARAM_MAX_EMBEDDED_PARAM #if FORCE_APJ_DEFAULT_PARAMETERS #if BOARD_FLASH_SIZE <= 1024 #define AP_PARAM_MAX_EMBEDDED_PARAM 1024 #else #define AP_PARAM_MAX_EMBEDDED_PARAM 8192 #endif #else #define AP_PARAM_MAX_EMBEDDED_PARAM 0 #endif #endif // allow for dynamically added tables when scripting enabled #ifndef AP_PARAM_DYNAMIC_ENABLED #define AP_PARAM_DYNAMIC_ENABLED AP_SCRIPTING_ENABLED #endif // maximum number of dynamically created tables (from scripts) #ifndef AP_PARAM_MAX_DYNAMIC #define AP_PARAM_MAX_DYNAMIC 10 #endif #define AP_PARAM_DYNAMIC_KEY_BASE 300 /* flags for variables in var_info and group tables */ // a nested offset is for subgroups that are not subclasses #define AP_PARAM_FLAG_NESTED_OFFSET (1<<0) // a pointer variable is for dynamically allocated objects #define AP_PARAM_FLAG_POINTER (1<<1) // an enable variable allows a whole subtree of variables to be made // invisible #define AP_PARAM_FLAG_ENABLE (1<<2) // don't shift index 0 to index 63. Use this when you know there will be // no conflict with the parent #define AP_PARAM_FLAG_NO_SHIFT (1<<3) // the var_info is a pointer, allowing for dynamic definition of the var_info tree #define AP_PARAM_FLAG_INFO_POINTER (1<<4) // this parameter is visible to GCS via mavlink but should never be // set by anything other than the ArduPilot code responsible for its // use. #define AP_PARAM_FLAG_INTERNAL_USE_ONLY (1<<5) // hide parameter from param download #define AP_PARAM_FLAG_HIDDEN (1<<6) // Default value is a "pointer" actually its a offest from the base value, but the idea is the same #define AP_PARAM_FLAG_DEFAULT_POINTER (1<<7) // keep all flags before the FRAME tags // vehicle and frame type flags, used to hide parameters when not // relevent to a vehicle type. Use AP_Param::set_frame_type_flags() to // enable parameters flagged in this way. frame type flags are stored // in flags field, shifted by AP_PARAM_FRAME_TYPE_SHIFT. #define AP_PARAM_FRAME_TYPE_SHIFT 8 // supported frame types for parameters #define AP_PARAM_FRAME_COPTER (1<<0) #define AP_PARAM_FRAME_ROVER (1<<1) #define AP_PARAM_FRAME_PLANE (1<<2) #define AP_PARAM_FRAME_SUB (1<<3) #define AP_PARAM_FRAME_TRICOPTER (1<<4) #define AP_PARAM_FRAME_HELI (1<<5) #define AP_PARAM_FRAME_BLIMP (1<<6) // a variant of offsetof() to work around C++ restrictions. // this can only be used when the offset of a variable in a object // is constant and known at compile time #define AP_VAROFFSET(type, element) (((ptrdiff_t)(&((const type *)1)->element))-1) // find the type of a variable given the class and element #define AP_CLASSTYPE(clazz, element) ((uint8_t)(((const clazz *) 1)->element.vtype)) // declare a group var_info line #define AP_GROUPINFO_FLAGS(name, idx, clazz, element, def, flags) { name, AP_VAROFFSET(clazz, element), {def_value : def}, flags, idx, AP_CLASSTYPE(clazz, element)} // declare a group var_info line with a frame type mask #define AP_GROUPINFO_FRAME(name, idx, clazz, element, def, frame_flags) AP_GROUPINFO_FLAGS(name, idx, clazz, element, def, (frame_flags)< _REVERSED conversion CONVERT_FLAG_FORCE=2 // store new value even if configured in eeprom already }; static void convert_old_parameter(const struct ConversionInfo *info, float scaler, uint8_t flags=0); // move all parameters from a class to a new location // is_top_level: Is true if the class had its own top level key, param_key. It is false if the class was a subgroup static void convert_class(uint16_t param_key, void *object_pointer, const struct AP_Param::GroupInfo *group_info, uint16_t old_index, uint16_t old_top_element, bool is_top_level); /* fetch a parameter value based on the index within a group. This is used to find the old value of a parameter that has been removed from an object. */ static bool get_param_by_index(void *obj_ptr, uint8_t idx, ap_var_type old_ptype, void *pvalue); /// Erase all variables in EEPROM. /// static void erase_all(void); /// Returns the first variable /// /// @return The first variable in _var_info, or nullptr if /// there are none. /// static AP_Param * first(ParamToken *token, enum ap_var_type *ptype, float *default_val = nullptr); /// Returns the next variable in _var_info, recursing into groups /// as needed static AP_Param * next(ParamToken *token, enum ap_var_type *ptype) { return next(token, ptype, false); } static AP_Param * next(ParamToken *token, enum ap_var_type *ptype, bool skip_disabled, float *default_val = nullptr); /// Returns the next scalar variable in _var_info, recursing into groups /// as needed static AP_Param * next_scalar(ParamToken *token, enum ap_var_type *ptype, float *default_val = nullptr); /// get the size of a type in bytes static uint8_t type_size(enum ap_var_type type); /// cast a variable to a float given its type float cast_to_float(enum ap_var_type type) const; // check var table for consistency static void check_var_info(void); // return true if the parameter is configured bool configured(void) const; // return true if the parameter is read-only bool is_read_only(void) const; // return the persistent top level key for the ParamToken key static uint16_t get_persistent_key(uint16_t key) { return var_info(key).key; } // count of parameters in tree static uint16_t count_parameters(void); // invalidate parameter count static void invalidate_count(void); static void set_hide_disabled_groups(bool value) { _hide_disabled_groups = value; } // set frame type flags. Used to unhide frame specific parameters static void set_frame_type_flags(uint16_t flags_to_set) { invalidate_count(); _frame_type_flags |= flags_to_set; } // check if a given frame type should be included static bool check_frame_type(uint16_t flags); #if AP_PARAM_KEY_DUMP /// print the value of all variables static void show_all(AP_HAL::BetterStream *port, bool showKeyValues=false); /// print the value of one variable static void show(const AP_Param *param, const char *name, enum ap_var_type ptype, AP_HAL::BetterStream *port); /// print the value of one variable static void show(const AP_Param *param, const ParamToken &token, enum ap_var_type ptype, AP_HAL::BetterStream *port); #endif // AP_PARAM_KEY_DUMP static AP_Param *get_singleton() { return _singleton; } #if AP_PARAM_DYNAMIC_ENABLED // allow for dynamically added parameter tables from scripts static bool add_table(uint8_t key, const char *prefix, uint8_t num_params); static bool add_param(uint8_t key, uint8_t param_num, const char *pname, float default_value); static bool load_int32(uint16_t key, uint32_t group_element, int32_t &value); #endif static bool load_defaults_file(const char *filename, bool last_pass); protected: // store default value in linked list static void add_default(AP_Param *ap, float v); private: static AP_Param *_singleton; /// EEPROM header /// /// This structure is placed at the head of the EEPROM to indicate /// that the ROM is formatted for AP_Param. /// struct EEPROM_header { uint8_t magic[2]; uint8_t revision; uint8_t spare; }; static_assert(sizeof(struct EEPROM_header) == 4, "Bad EEPROM_header size!"); static uint16_t sentinal_offset; /* This header is prepended to a variable stored in EEPROM. * The meaning is as follows: * * - key: the k_param enum value from Parameter.h in the sketch * * - group_element: This is zero for top level parameters. For * parameters stored within an object this is divided * into 3 lots of 6 bits, allowing for three levels * of object to be stored in the eeprom * * - type: the ap_var_type value for the variable */ struct Param_header { // to get 9 bits for key we needed to split it into two parts to keep binary compatibility uint32_t key_low : 8; uint32_t type : 5; uint32_t key_high : 1; uint32_t group_element : 18; }; static_assert(sizeof(struct Param_header) == 4, "Bad Param_header size!"); // number of bits in each level of nesting of groups static const uint8_t _group_level_shift = 6; static const uint8_t _group_bits = 18; static const uint16_t _sentinal_key = 0x1FF; static const uint8_t _sentinal_type = 0x1F; static const uint8_t _sentinal_group = 0xFF; static uint16_t _frame_type_flags; /* this is true if when scanning a defaults file we find all of the parameters */ static bool done_all_default_params; /* structure for built-in defaults file that can be modified using apj_tool.py */ #if AP_PARAM_MAX_EMBEDDED_PARAM > 0 struct PACKED param_defaults_struct { char magic_str[8]; uint8_t param_magic[8]; uint16_t max_length; volatile uint16_t length; volatile char data[AP_PARAM_MAX_EMBEDDED_PARAM]; }; static const param_defaults_struct param_defaults_data; #endif static void check_group_info(const struct GroupInfo *group_info, uint16_t *total_size, uint8_t max_bits, uint8_t prefix_length); static bool duplicate_key(uint16_t vindex, uint16_t key); static bool adjust_group_offset(uint16_t vindex, const struct GroupInfo &group_info, ptrdiff_t &new_offset); static bool get_base(const struct Info &info, ptrdiff_t &base); /// get group_info pointer based on flags static const struct GroupInfo *get_group_info(const struct GroupInfo &ginfo); /// get group_info pointer based on flags static const struct GroupInfo *get_group_info(const struct Info &ginfo); const struct Info * find_var_info_group( const struct GroupInfo * group_info, uint16_t vindex, uint32_t group_base, uint8_t group_shift, ptrdiff_t group_offset, uint32_t * group_element, const struct GroupInfo * &group_ret, struct GroupNesting &group_nesting, uint8_t * idx) const; const struct Info * find_var_info( uint32_t * group_element, const struct GroupInfo * &group_ret, struct GroupNesting &group_nesting, uint8_t * idx) const; const struct Info * find_var_info_token(const ParamToken &token, uint32_t * group_element, const struct GroupInfo * &group_ret, struct GroupNesting &group_nesting, uint8_t * idx) const; static const struct Info * find_by_header_group( struct Param_header phdr, void **ptr, uint16_t vindex, const struct GroupInfo *group_info, uint32_t group_base, uint8_t group_shift, ptrdiff_t group_offset); static const struct Info * find_by_header( struct Param_header phdr, void **ptr); void add_vector3f_suffix( char *buffer, size_t buffer_size, uint8_t idx) const; static AP_Param * find_group( const char *name, uint16_t vindex, ptrdiff_t group_offset, const struct GroupInfo *group_info, enum ap_var_type *ptype); static void write_sentinal(uint16_t ofs); static uint16_t get_key(const Param_header &phdr); static void set_key(Param_header &phdr, uint16_t key); static bool is_sentinal(const Param_header &phrd); static bool scan( const struct Param_header *phdr, uint16_t *pofs); static void eeprom_write_check( const void *ptr, uint16_t ofs, uint8_t size); static AP_Param * next_group( const uint16_t vindex, const struct GroupInfo *group_info, bool *found_current, const uint32_t group_base, const uint8_t group_shift, const ptrdiff_t group_offset, ParamToken *token, enum ap_var_type *ptype, bool skip_disabled, float *default_val); // find a default value given a pointer to a default value in flash static float get_default_value(const AP_Param *object_ptr, const struct GroupInfo &info); static float get_default_value(const AP_Param *object_ptr, const struct Info &info); static bool parse_param_line(char *line, char **vname, float &value, bool &read_only); /* load a parameter defaults file. This happens as part of load_all() */ static bool count_defaults_in_file(const char *filename, uint16_t &num_defaults); static bool count_param_defaults(const volatile char *ptr, int32_t length, uint16_t &count); static bool read_param_defaults_file(const char *filename, bool last_pass, uint16_t &idx); // load a defaults.parm using AP_FileSystem: static void load_defaults_file_from_filesystem(const char *filename, bool lastpass); // load an @ROMFS defaults.parm using ROMFS API: static void load_defaults_file_from_romfs(const char *filename, bool lastpass); // load defaults from supplied string: static void load_param_defaults(const volatile char *ptr, int32_t length, bool last_pass); /* load defaults from embedded parameters */ static bool count_embedded_param_defaults(uint16_t &count); static void load_embedded_param_defaults(bool last_pass); // return true if the parameter is configured in the defaults file bool configured_in_defaults_file(bool &read_only) const; // return true if the parameter is configured in EEPROM/FRAM bool configured_in_storage(void) const; /* convert width of a parameter, allowing update to wider scalar values without changing the parameter indexes. This will return true if the parameter was converted from an old parameter value */ bool _convert_parameter_width(ap_var_type old_ptype, float scale_factor, bool bitmask); // send a parameter to all GCS instances void send_parameter(const char *name, enum ap_var_type param_header_type, uint8_t idx) const; static StorageAccess _storage; static StorageAccess _storage_bak; static uint16_t _num_vars; static uint16_t _parameter_count; static uint16_t _count_marker; static uint16_t _count_marker_done; static HAL_Semaphore _count_sem; static const struct Info * _var_info; #if AP_PARAM_DYNAMIC_ENABLED // allow for a dynamically allocated var table static uint16_t _num_vars_base; static struct Info * _var_info_dynamic; static const struct AP_Param::Info &var_info(uint16_t i) { return i<_num_vars_base? _var_info[i] : _var_info_dynamic[i-_num_vars_base]; } static uint8_t _dynamic_table_sizes[AP_PARAM_MAX_DYNAMIC]; #else // simple static var table in flash static const struct Info &var_info(uint16_t i) { return _var_info[i]; } #endif /* list of overridden values from load_defaults_file() */ struct param_override { const AP_Param *object_ptr; float value; bool read_only; // param is marked @READONLY }; static struct param_override *param_overrides; static uint16_t num_param_overrides; static uint16_t param_overrides_len; static uint16_t num_read_only; // values filled into the EEPROM header static const uint8_t k_EEPROM_magic0 = 0x50; static const uint8_t k_EEPROM_magic1 = 0x41; ///< "AP" static const uint8_t k_EEPROM_revision = 6; ///< current format revision static bool _hide_disabled_groups; // support for background saving of parameters. We pack it to reduce memory for the // queue struct PACKED param_save { AP_Param *param; bool force_save; }; static ObjectBuffer_TS save_queue; static bool registered_save_handler; // background function for saving parameters void save_io_handler(void); // Store default values from add_default() calls in linked list struct defaults_list { AP_Param *ap; float val; defaults_list *next; }; static defaults_list *default_list; static void check_default(AP_Param *ap, float *default_value); }; namespace AP { AP_Param *param(); }; /// Template class for scalar variables. /// /// Objects of this type have a value, and can be treated in many ways as though they /// were the value. /// /// @tparam T The scalar type of the variable /// @tparam PT The AP_PARAM_* type /// template class AP_ParamT : public AP_Param { public: static const ap_var_type vtype = PT; /// Value getter /// const T &get(void) const { return _value; } /// Value setter /// void set(const T &v) { _value = v; } // set a parameter that is an ENABLE param void set_enable(const T &v); /// Sets if the parameter is unconfigured /// void set_default(const T &v); /// Sets parameter and default /// void set_and_default(const T &v); /// Value setter - set value, tell GCS /// void set_and_notify(const T &v); /// Combined set and save /// void set_and_save(const T &v); /// Combined set and save, but only does the save if the value if /// different from the current ram value, thus saving us a /// scan(). This should only be used where we have not set() the /// value separately, as otherwise the value in EEPROM won't be /// updated correctly. void set_and_save_ifchanged(const T &v); /// Conversion to T returns a reference to the value. /// /// This allows the class to be used in many situations where the value would be legal. /// operator const T &() const { return _value; } /// AP_ParamT types can implement AP_Param::cast_to_float /// float cast_to_float(void) const; protected: T _value; }; /// Template class for non-scalar variables. /// /// Objects of this type have a value, and can be treated in many ways as though they /// were the value. /// /// @tparam T The scalar type of the variable /// @tparam PT AP_PARAM_* type /// template class AP_ParamV : public AP_Param { public: static const ap_var_type vtype = PT; /// Value getter /// const T &get(void) const { return _value; } /// Value setter /// void set(const T &v) { _value = v; } /// Value setter - set value, tell GCS /// void set_and_notify(const T &v); /// Combined set and save /// void set_and_save(const T &v); /// Combined set and save, but only does the save if the value is /// different from the current ram value, thus saving us a /// scan(). This should only be used where we have not set() the /// value separately, as otherwise the value in EEPROM won't be /// updated correctly. void set_and_save_ifchanged(const T &v); /// Conversion to T returns a reference to the value. /// /// This allows the class to be used in many situations where the value would be legal. /// operator const T &() const { return _value; } protected: T _value; }; /// Template class for array variables. /// /// Objects created using this template behave like arrays of the type T, /// but are stored like single variables. /// /// @tparam T The scalar type of the variable /// @tparam N number of elements /// @tparam PT the AP_PARAM_* type /// template class AP_ParamA : public AP_Param { public: static const ap_var_type vtype = PT; /// Array operator accesses members. /// /// @note It would be nice to range-check i here, but then what would we return? /// const T & operator[](uint8_t i) { return _value[i]; } const T & operator[](int8_t i) { return _value[(uint8_t)i]; } /// Value getter /// /// @note Returns zero for index values out of range. /// T get(uint8_t i) const { if (i < N) { return _value[i]; } else { return (T)0; } } /// Value setter /// /// @note Attempts to set an index out of range are discarded. /// void set(uint8_t i, const T &v) { if (i < N) { _value[i] = v; } } protected: T _value[N]; }; /// Convenience macro for defining instances of the AP_ParamT template. /// // declare a scalar type // _t is the base type // _suffix is the suffix on the AP_* type name // _pt is the enum ap_var_type type #define AP_PARAMDEF(_t, _suffix, _pt) typedef AP_ParamT<_t, _pt> AP_ ## _suffix; AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8 AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16 AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32 // declare a non-scalar type // this is used in AP_Math.h // _t is the base type // _suffix is the suffix on the AP_* type name // _pt is the enum ap_var_type type #define AP_PARAMDEFV(_t, _suffix, _pt) typedef AP_ParamV<_t, _pt> AP_ ## _suffix; /* template class for enum types based on AP_Int8 */ template class AP_Enum : public AP_Int8 { public: operator const eclass () const { return (eclass)_value; } void set(eclass v) { AP_Int8::set(int8_t(v)); } }; template class AP_Enum16 : public AP_Int16 { public: operator const eclass () const { return (eclass)_value; } void set(eclass v) { AP_Int16::set(int16_t(v)); } };