/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* helicopter simulator class */ #include "SIM_Helicopter.h" #include namespace SITL { Helicopter::Helicopter(const char *frame_str) : Aircraft(frame_str) { mass = 4.54f; if (strstr(frame_str, "-dual")) { frame_type = HELI_FRAME_DUAL; _time_delay = 30; nominal_rpm = 1300; } else if (strstr(frame_str, "-compound")) { frame_type = HELI_FRAME_COMPOUND; _time_delay = 50; nominal_rpm = 1500; } else if (strstr(frame_str, "-blade360")) { frame_type = HELI_FRAME_BLADE360; _time_delay = 40; nominal_rpm = 2100; } else { frame_type = HELI_FRAME_CONVENTIONAL; _time_delay = 50; nominal_rpm = 1500; } /* For conventional and compound scaling from motor power to Newtons. Allows the copter to hover against gravity when the motor is at hover_throttle normalized to hover at 1500RPM at 5 deg collective. */ thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f)); // calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f)); // torque with zero collective pitch. Percentage of total hover torque is based on full scale helicopters. torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(nominal_rpm * 2.0f * M_PI / 60.0f); frame_height = 0.1; gas_heli = (strstr(frame_str, "-gas") != nullptr); ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT; lock_step_scheduled = true; motor_mask |= (1U<<0); } /* update the helicopter simulation by one time step */ void Helicopter::update(const struct sitl_input &input) { const float dt = frame_time_us * 1.0e-6f; // get wind vector setup update_wind(input); motor_interlock = input.servos[7] > 1400; float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1); float rsc_scale = rsc/rsc_setpoint; float thrust = 0; float roll_rate = 0; float pitch_rate = 0; float yaw_rate = 0; float torque_effect_accel = 0; float lateral_x_thrust = 0; float lateral_y_thrust = 0; if (_time_delay == 0) { for (uint8_t i = 0; i < 6; i++) { _servos_delayed[i] = input.servos[i]; } } else if (servos_stored_buffer == nullptr) { uint16_t buffer_size = constrain_int16(_time_delay, 1, 100) * 0.001f / dt; servos_stored_buffer = new ObjectBuffer(buffer_size); while (servos_stored_buffer->space() != 0) { push_to_buffer(input.servos); } for (uint8_t i = 0; i < 6; i++) { _servos_delayed[i] = input.servos[i]; } } else { pull_from_buffer(_servos_delayed); push_to_buffer(input.servos); } float swash1 = (_servos_delayed[0]-1000) / 1000.0f; float swash2 = (_servos_delayed[1]-1000) / 1000.0f; float swash3 = (_servos_delayed[2]-1000) / 1000.0f; Vector3f rot_accel; Vector3f air_resistance; switch (frame_type) { case HELI_FRAME_CONVENTIONAL: { // simulate a traditional helicopter float Ma1s = 617.5f; float Lb1s = 3588.6f; float Mu = 0.003f; float Lv = -0.006; float Xu = -0.125; float Yv = -0.375; float Zw = -0.375; float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f; // determine RPM rpm[0] = update_rpm(motor_interlock, dt); // thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll); // Calculate main rotor torque effect on body torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz; // Calculate rotor tip path plane angle float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar; float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); float yaw_cmd = 2.0f * tail_rotor - 1.0f; // convert range to -1 to 1 float tail_rotor_torque = (21.6f * 2.96f * yaw_cmd - 2.96f * gyro.z) * sq(rpm[0]/nominal_rpm); float tail_rotor_thrust = -1.0f * tail_rotor_torque * izz / tr_dist; //right pedal produces left body accel // rotational acceleration, in rad/s/s, in body frame rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y; rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x; rot_accel.z = tail_rotor_torque + torque_effect_accel; lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y; lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw); break; } case HELI_FRAME_BLADE360: { // simulate a Blade 360 helicopter. This model was taken from the following reference. // Walker, J, Tishler, M, "Identification and Control Design of a Sub-Scale Flybarless Helicopter", // Vertical Flight Society’s 77th Annual Forum & Technology Display, Virtual, May 10-14, 2021. float Ma1s = 796.7f; float Lb1s = 5115.2f; float Mu = 2.7501f; float Mv = -2.3039f; float Lu = -28.7796f; float Lv = -5.5376f; float Xu = -0.2270f; float Yv = -0.1852f; float Yp = 0.2303f; float Zw = -0.5910f; float Nr = -2.0131f; float Nw = 5.7574f; float Nv = 1.7258f; float Ncol = -32.4616f; float Nped = 63.0040f; float Zcol = -22.3239f; float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f; // determine RPM rpm[0] = update_rpm(motor_interlock, dt); // collective adjusted for coll_min(1460) to coll_max(1740) as 0 to 1 with 1500 being zero thrust float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f); // Calculate rotor tip path plane angle float roll_cyclic = 1.283f * (swash1 - swash2); float pitch_cyclic = 1.48f * ((swash1+swash2) / 2.0f - swash3); Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); float yaw_cmd = 1.45f * (2.0f * tail_rotor - 1.0f); // convert range to -1 to 1 // rotational acceleration, in rad/s/s, in body frame rot_accel.x = _tpp_angle.x * Lb1s + Lu * velocity_air_bf.x + Lv * velocity_air_bf.y; rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x + Mv * velocity_air_bf.y; rot_accel.z = Nv * velocity_air_bf.y + Nr * gyro.z + sq(rpm[0]/nominal_rpm) * Nped * yaw_cmd + Nw * velocity_air_bf.z + sq(rpm[0]/nominal_rpm) * Ncol * (coll - 0.5f); lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y + Yp * gyro.x - 3.2 * 0.01745 * GRAVITY_MSS; lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; float vertical_thrust = Zcol * coll * sq(rpm[0]/nominal_rpm) + velocity_air_bf.z * Zw; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, vertical_thrust); break; } case HELI_FRAME_DUAL: { // simulate a tandem helicopter thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; float swash4 = (_servos_delayed[3]-1000) / 1000.0f; float swash5 = (_servos_delayed[4]-1000) / 1000.0f; float swash6 = (_servos_delayed[5]-1000) / 1000.0f; thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f; torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6)); roll_rate = (swash1-swash2) + (swash4-swash5); pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6); yaw_rate = (swash1-swash2) + (swash5-swash4); roll_rate *= rsc_scale; pitch_rate *= rsc_scale; yaw_rate *= rsc_scale; // rotational acceleration, in rad/s/s, in body frame rot_accel.x = roll_rate * roll_rate_max; rot_accel.y = pitch_rate * pitch_rate_max; rot_accel.z = yaw_rate * yaw_rate_max; // rotational air resistance rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; // torque effect on tail rot_accel.z += torque_effect_accel; // air resistance air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity); // simulate rotor speed rpm[0] = thrust * nominal_rpm; // scale thrust to newtons thrust *= thrust_scale; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass); accel_body += dcm.transposed() * air_resistance; break; } case HELI_FRAME_COMPOUND: { // simulate a compound helicopter float Ma1s = 617.5f; float Lb1s = 3588.6f; float Mu = 0.003f; float Lv = -0.006; float Xu = -0.125; float Yv = -0.375; float Zw = -0.375; // determine RPM rpm[0] = update_rpm(motor_interlock, dt); // thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll); // Calculate main rotor torque effect on body torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz; // Calculate rotor tip path plane angle float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar; float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); // Calculate thruster yaw and forward thrust effects // Thruster command range -1 to 1. Positive is forward thrust for both float right_thruster_cmd = 2.0f * (_servos_delayed[3]-1000) / 1000.0f - 1.0f; float left_thruster_cmd = 2.0f * (_servos_delayed[4]-1000) / 1000.0f - 1.0f; // assume torque from each thruster only half of normal tailrotor since thrusters 1/2 distance from cg float right_thruster_torque = (-0.5f * 21.6f * 2.96f * right_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm); float left_thruster_torque = (0.5f * 21.6f * 2.96f * left_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm); float right_thruster_force = -1.0f * right_thruster_torque * izz / (0.5f * tr_dist); float left_thruster_force = left_thruster_torque * izz / (0.5f * tr_dist); // rotational acceleration, in rad/s/s, in body frame rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y; rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x; rot_accel.z = right_thruster_torque + left_thruster_torque + torque_effect_accel; lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y; lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw); break; } } update_dynamics(rot_accel); update_external_payload(input); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } void Helicopter::update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt) { float tf_inv; float Lfa1s; float Mfb1s; float Lflt; float Lflg; float Mflt; float Mflg; if (frame_type == HELI_FRAME_BLADE360) { tf_inv = 1.0f / 0.0353f; Lfa1s = 1.0477f; Mfb1s = -1.0057f; Lflt = 0.2375f; Lflg = -0.0286f; Mflt = 0.0344f; Mflg = 0.2292f; } else { tf_inv = 1.0f / 0.068232f; Lfa1s = 1.2963f; Mfb1s = -1.3402f; Lflt = 1.7635f; Lflg = -0.61171f; Mflt = 0.52454f; Mflg = 1.9432f; } float b1s_dot = -1 * gyro.x - tf_inv * tpp_angle.x + tf_inv * (Lfa1s * tpp_angle.y + Lflt * ctrl_pos.x + Lflg * ctrl_pos.y); float a1s_dot = -1 * gyro.y - tf_inv * tpp_angle.y + tf_inv * (Mfb1s * tpp_angle.x + Mflt * ctrl_pos.x + Mflg * ctrl_pos.y); tpp_angle.x += b1s_dot * dt; tpp_angle.y += a1s_dot * dt; } float Helicopter::update_rpm(bool interlock, float dt) { static float rotor_runup_output; float runup_time = 8.0f; // ramp speed estimate towards control out float runup_increment = dt / runup_time; if (interlock) { if (rotor_runup_output < 1.0f) { rotor_runup_output += runup_increment; } else { rotor_runup_output = 1.0f; } }else{ if (rotor_runup_output > 0.0f) { rotor_runup_output -= runup_increment; } else { rotor_runup_output = 0.0f; } } return nominal_rpm * constrain_float(rotor_runup_output,0.0f,1.0f); } // push servo input to buffer void Helicopter::push_to_buffer(const uint16_t servos_input[16]) { servos_stored sample; sample.servo1 = servos_input[0]; sample.servo2 = servos_input[1]; sample.servo3 = servos_input[2]; sample.servo4 = servos_input[3]; sample.servo5 = servos_input[4]; sample.servo6 = servos_input[5]; servos_stored_buffer->push(sample); } // pull servo delay from buffer void Helicopter::pull_from_buffer(uint16_t servos_delayed[6]) { servos_stored sample; if (!servos_stored_buffer->pop(sample)) { // no sample return; } servos_delayed[0] = sample.servo1; servos_delayed[1] = sample.servo2; servos_delayed[2] = sample.servo3; servos_delayed[3] = sample.servo4; servos_delayed[4] = sample.servo5; servos_delayed[5] = sample.servo6; } } // namespace SITL