/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
DPS280 barometer driver
*/
#include "AP_Baro_DPS280.h"
#include
#include
extern const AP_HAL::HAL &hal;
#define DPS280_REG_PRESS 0x00
#define DPS280_REG_TEMP 0x03
#define DPS280_REG_PCONF 0x06
#define DPS280_REG_TCONF 0x07
#define DPS280_REG_MCONF 0x08
#define DPS280_REG_CREG 0x09
#define DPS280_REG_ISTS 0x0A
#define DPS280_REG_FSTS 0x0B
#define DPS280_REG_RESET 0x0C
#define DPS280_REG_PID 0x0D
#define DPS280_REG_COEF 0x10
#define DPS280_REG_CSRC 0x28
#define DPS280_WHOAMI 0x10
AP_Baro_DPS280::AP_Baro_DPS280(AP_Baro &baro, AP_HAL::OwnPtr _dev)
: AP_Baro_Backend(baro)
, dev(std::move(_dev))
{
}
AP_Baro_Backend *AP_Baro_DPS280::probe(AP_Baro &baro,
AP_HAL::OwnPtr _dev)
{
if (!_dev) {
return nullptr;
}
AP_Baro_DPS280 *sensor = new AP_Baro_DPS280(baro, std::move(_dev));
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
/*
handle bit width for 16 bit config registers
*/
void AP_Baro_DPS280::fix_config_bits16(int16_t &v, uint8_t bits) const
{
if (v > int16_t((1U<<(bits-1))-1)) {
v = v - (1U< int32_t((1U<<(bits-1))-1)) {
v = v - (1U<read_registers(DPS280_REG_COEF, buf, 18)) {
return false;
}
calibration.C0 = (buf[0] << 4) + ((buf[1] >>4) & 0x0F);
calibration.C1 = (buf[2] + ((buf[1] & 0x0F)<<8));
calibration.C00 = ((buf[4]<<4) + (buf[3]<<12)) + ((buf[5]>>4) & 0x0F);
calibration.C10 = ((buf[5] & 0x0F)<<16) + buf[7] + (buf[6]<<8);
calibration.C01 = (buf[9] + (buf[8]<<8));
calibration.C11 = (buf[11] + (buf[10]<<8));
calibration.C20 = (buf[13] + (buf[12]<<8));
calibration.C21 = (buf[15] + (buf[14]<<8));
calibration.C30 = (buf[17] + (buf[16]<<8));
fix_config_bits16(calibration.C0, 12);
fix_config_bits16(calibration.C1, 12);
fix_config_bits32(calibration.C00, 20);
fix_config_bits32(calibration.C10, 20);
fix_config_bits16(calibration.C01, 16);
fix_config_bits16(calibration.C11, 16);
fix_config_bits16(calibration.C20, 16);
fix_config_bits16(calibration.C21, 16);
fix_config_bits16(calibration.C30, 16);
/* get calibration source */
if (!dev->read_registers(DPS280_REG_CSRC, &calibration.temp_source, 1)) {
return false;
}
calibration.temp_source &= 0x80;
return true;
}
bool AP_Baro_DPS280::init()
{
if (!dev || !dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
return false;
}
dev->set_speed(AP_HAL::Device::SPEED_HIGH);
uint8_t whoami=0;
if (!dev->read_registers(DPS280_REG_PID, &whoami, 1) ||
whoami != DPS280_WHOAMI) {
// not a DPS280
printf("DPS280 whoami=0x%x\n", whoami);
dev->get_semaphore()->give();
return false;
}
if (!read_calibration()) {
dev->get_semaphore()->give();
return false;
}
dev->write_register(DPS280_REG_CREG, 0x0C); // shift for 16x oversampling
dev->write_register(DPS280_REG_PCONF, 0x54); // 32 Hz, 16x oversample
dev->write_register(DPS280_REG_TCONF, 0x54 | calibration.temp_source); // 32 Hz, 16x oversample
dev->write_register(DPS280_REG_MCONF, 0x07); // continuous temp and pressure
instance = _frontend.register_sensor();
dev->get_semaphore()->give();
// request 64Hz update. New data will be available at 32Hz
dev->register_periodic_callback((1000 / 64) * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_DPS280::timer, void));
return true;
}
/*
calculate corrected pressure and temperature
*/
void AP_Baro_DPS280::calculate_PT(int32_t UT, int32_t UP, float &pressure, float &temperature)
{
const struct dps280_cal &cal = calibration;
// scaling for 16x oversampling
const float scaling_16 = 1.0/253952;
float temp_scaled;
float press_scaled;
temp_scaled = float(UT) * scaling_16;
temperature = cal.C0 * 0.5 + cal.C1 * temp_scaled;
press_scaled = float(UP) * scaling_16;
pressure = cal.C00;
pressure += press_scaled * (cal.C10 + press_scaled * (cal.C20 + press_scaled * cal.C30));
pressure += temp_scaled * cal.C01;
pressure += temp_scaled * press_scaled * (cal.C11 + press_scaled * cal.C21);
}
// acumulate a new sensor reading
void AP_Baro_DPS280::timer(void)
{
uint8_t buf[6];
uint8_t ready;
if (!dev->read_registers(DPS280_REG_MCONF, &ready, 1) || !(ready & (1U<<4))) {
// pressure not ready
return;
}
if (!dev->read_registers(DPS280_REG_PRESS, buf, 3)) {
return;
}
if (!dev->read_registers(DPS280_REG_TEMP, &buf[3], 3)) {
return;
}
int32_t press = (buf[2]) + (buf[1]<<8) + (buf[0]<<16);
int32_t temp = (buf[5]) + (buf[4]<<8) + (buf[3]<<16);
fix_config_bits32(press, 24);
fix_config_bits32(temp, 24);
float pressure, temperature;
calculate_PT(temp, press, pressure, temperature);
if (!pressure_ok(pressure)) {
return;
}
if (_sem.take_nonblocking()) {
pressure_sum += pressure;
temperature_sum += temperature;
count++;
_sem.give();
}
}
// transfer data to the frontend
void AP_Baro_DPS280::update(void)
{
if (count != 0 && _sem.take_nonblocking()) {
if (count == 0) {
_sem.give();
return;
}
_copy_to_frontend(instance, pressure_sum/count, temperature_sum/count);
pressure_sum = 0;
temperature_sum = 0;
count=0;
_sem.give();
}
}