// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if LITE == DISABLED #if LOGGING_ENABLED == ENABLED // Code to Write and Read packets from DataFlash log memory // Code to interact with the user to dump or erase logs #define HEAD_BYTE1 0xA3 // Decimal 163 #define HEAD_BYTE2 0x95 // Decimal 149 #define END_BYTE 0xBA // Decimal 186 // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t dump_log(uint8_t argc, const Menu::arg *argv); static int8_t erase_logs(uint8_t argc, const Menu::arg *argv); static int8_t select_logs(uint8_t argc, const Menu::arg *argv); static int16_t cur_throttle =0; // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory //static int8_t help_log(uint8_t argc, const Menu::arg *argv) /*{ cliSerial->printf_P(PSTR("\n" "Commands:\n" " dump " " erase (all logs)\n" " enable | all\n" " disable | all\n" "\n")); return 0; }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command log_menu_commands[] PROGMEM = { {"dump", dump_log}, {"erase", erase_logs}, {"enable", select_logs}, {"disable", select_logs} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, print_log_menu); static bool print_log_menu(void) { int16_t log_start; int16_t log_end; int16_t temp; int16_t last_log_num = DataFlash.find_last_log(); uint16_t num_logs = DataFlash.get_num_logs(); cliSerial->printf_P(PSTR("logs enabled: ")); if (0 == g.log_bitmask) { cliSerial->printf_P(PSTR("none")); }else{ // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // the bit being set and print the name of the log option to suit. #define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(#_s)) PLOG(ATTITUDE_FAST); PLOG(ATTITUDE_MED); PLOG(GPS); PLOG(PM); PLOG(CTUN); PLOG(NTUN); PLOG(MODE); PLOG(RAW); PLOG(CMD); PLOG(CUR); #undef PLOG } cliSerial->println(); if (num_logs == 0) { cliSerial->printf_P(PSTR("\nNo logs\n\n")); }else{ cliSerial->printf_P(PSTR("\n%d logs\n"), num_logs); for(int i=num_logs;i>=1;i--) { int last_log_start = log_start, last_log_end = log_end; temp = last_log_num-i+1; DataFlash.get_log_boundaries(temp, log_start, log_end); cliSerial->printf_P(PSTR("Log %d, start %d, end %d\n"), temp, log_start, log_end); if (last_log_start == log_start && last_log_end == log_end) { // we are printing bogus logs break; } } cliSerial->println(); } return(true); } static int8_t dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log; int16_t dump_log_start; int16_t dump_log_end; byte last_log_num; // check that the requested log number can be read dump_log = argv[1].i; last_log_num = DataFlash.find_last_log(); if (dump_log == -2) { for(uint16_t count=1; count<=DataFlash.df_NumPages; count++) { DataFlash.StartRead(count); cliSerial->printf_P(PSTR("DF page, log file #, log page: %d,\t"), count); cliSerial->printf_P(PSTR("%d,\t"), DataFlash.GetFileNumber()); cliSerial->printf_P(PSTR("%d\n"), DataFlash.GetFilePage()); } return(-1); } else if (dump_log <= 0) { cliSerial->printf_P(PSTR("dumping all\n")); Log_Read(1, DataFlash.df_NumPages); return(-1); } else if ((argc != 2) || (dump_log <= (last_log_num - DataFlash.get_num_logs())) || (dump_log > last_log_num)) { cliSerial->printf_P(PSTR("bad log number\n")); return(-1); } DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end); cliSerial->printf_P(PSTR("Dumping Log %d, start pg %d, end pg %d\n"), dump_log, dump_log_start, dump_log_end); Log_Read(dump_log_start, dump_log_end); cliSerial->printf_P(PSTR("Done\n")); return 0; } void erase_callback(unsigned long t) { mavlink_delay(t); if (DataFlash.GetWritePage() % 128 == 0) { cliSerial->printf_P(PSTR("+")); } } static void do_erase_logs(void) { cliSerial->printf_P(PSTR("\nErasing log...\n")); DataFlash.EraseAll(erase_callback); cliSerial->printf_P(PSTR("\nLog erased.\n")); } static int8_t erase_logs(uint8_t argc, const Menu::arg *argv) { in_mavlink_delay = true; do_erase_logs(); in_mavlink_delay = false; return 0; } static int8_t select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { cliSerial->printf_P(PSTR("missing log type\n")); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp_P(argv[1].str, PSTR("all"))) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(RAW); TARG(CMD); TARG(CUR); #undef TARG } if (!strcasecmp_P(argv[0].str, PSTR("enable"))) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } // Write an attitude packet. Total length : 10 bytes static void Log_Write_Attitude(int16_t log_roll, int16_t log_pitch, uint16_t log_yaw) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_ATTITUDE_MSG); DataFlash.WriteInt(log_roll); DataFlash.WriteInt(log_pitch); DataFlash.WriteInt(log_yaw); DataFlash.WriteByte(END_BYTE); } // Write a performance monitoring packet. Total length : 19 bytes #if HIL_MODE != HIL_MODE_ATTITUDE static void Log_Write_Performance() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_PERFORMANCE_MSG); DataFlash.WriteLong(millis()- perf_mon_timer); DataFlash.WriteInt((int16_t)mainLoop_count); DataFlash.WriteInt(G_Dt_max); DataFlash.WriteByte(0); DataFlash.WriteByte(0); // was adc_constraints DataFlash.WriteByte(ahrs.renorm_range_count); DataFlash.WriteByte(ahrs.renorm_blowup_count); DataFlash.WriteByte(gps_fix_count); DataFlash.WriteInt(1); DataFlash.WriteInt((int)(ahrs.get_gyro_drift().x * 1000)); DataFlash.WriteInt((int)(ahrs.get_gyro_drift().y * 1000)); DataFlash.WriteInt((int)(ahrs.get_gyro_drift().z * 1000)); DataFlash.WriteInt(pmTest1); DataFlash.WriteByte(END_BYTE); } #endif // Write a command processing packet. Total length : 19 bytes //void Log_Write_Cmd(byte num, byte id, byte p1, int32_t alt, int32_t lat, int32_t lng) static void Log_Write_Cmd(byte num, struct Location *wp) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CMD_MSG); DataFlash.WriteByte(num); DataFlash.WriteByte(wp->id); DataFlash.WriteByte(wp->p1); DataFlash.WriteLong(wp->alt); DataFlash.WriteLong(wp->lat); DataFlash.WriteLong(wp->lng); DataFlash.WriteByte(END_BYTE); } static void Log_Write_Startup(byte type) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_STARTUP_MSG); DataFlash.WriteByte(type); DataFlash.WriteByte(g.command_total); DataFlash.WriteByte(END_BYTE); // create a location struct to hold the temp Waypoints for printing struct Location cmd = get_cmd_with_index(0); Log_Write_Cmd(0, &cmd); for (int i = 1; i <= g.command_total; i++){ cmd = get_cmd_with_index(i); Log_Write_Cmd(i, &cmd); } } // Write a control tuning packet. Total length : 22 bytes #if HIL_MODE != HIL_MODE_ATTITUDE static void Log_Write_Control_Tuning() { Vector3f accel = ins.get_accel(); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG); DataFlash.WriteInt((int)(g.channel_roll.servo_out)); DataFlash.WriteInt((int)nav_roll); DataFlash.WriteInt((int)ahrs.roll_sensor); DataFlash.WriteInt((int)(g.channel_pitch.servo_out)); DataFlash.WriteInt((int)nav_pitch); DataFlash.WriteInt((int)ahrs.pitch_sensor); DataFlash.WriteInt((int)(g.channel_throttle.servo_out)); DataFlash.WriteInt((int)(g.channel_rudder.servo_out)); DataFlash.WriteInt((int)(accel.y * 10000)); DataFlash.WriteByte(END_BYTE); } #endif // Write a navigation tuning packet. Total length : 18 bytes static void Log_Write_Nav_Tuning() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_NAV_TUNING_MSG); DataFlash.WriteInt((uint16_t)ahrs.yaw_sensor); DataFlash.WriteInt((int)wp_distance); DataFlash.WriteInt((uint16_t)target_bearing); DataFlash.WriteInt((uint16_t)nav_bearing); DataFlash.WriteInt(altitude_error); DataFlash.WriteInt(0); DataFlash.WriteInt((int)(nav_gain_scaler*1000)); DataFlash.WriteByte(END_BYTE); } // Write a mode packet. Total length : 5 bytes static void Log_Write_Mode(byte mode) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_MODE_MSG); DataFlash.WriteByte(mode); DataFlash.WriteByte(END_BYTE); } // Write an GPS packet. Total length : 30 bytes static void Log_Write_GPS( int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude, int32_t log_gps_alt, int32_t log_mix_alt, int32_t log_Ground_Speed, int32_t log_Ground_Course, byte log_Fix, byte log_NumSats) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_GPS_MSG); DataFlash.WriteLong(log_Time); DataFlash.WriteByte(log_Fix); DataFlash.WriteByte(log_NumSats); DataFlash.WriteLong(log_Lattitude); DataFlash.WriteLong(log_Longitude); DataFlash.WriteInt(sonar_dist); // This one is just temporary for testing out sonar in fixed wing DataFlash.WriteLong(log_mix_alt); DataFlash.WriteLong(log_gps_alt); DataFlash.WriteLong(log_Ground_Speed); DataFlash.WriteLong(log_Ground_Course); DataFlash.WriteInt(0); DataFlash.WriteInt(0); DataFlash.WriteInt(0); DataFlash.WriteByte(END_BYTE); } // Write an raw accel/gyro data packet. Total length : 28 bytes #if HIL_MODE != HIL_MODE_ATTITUDE static void Log_Write_Raw() { Vector3f gyro = ins.get_gyro(); Vector3f accel = ins.get_accel(); gyro *= t7; // Scale up for storage as long integers accel *= t7; DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_RAW_MSG); DataFlash.WriteLong((long)gyro.x); DataFlash.WriteLong((long)gyro.y); DataFlash.WriteLong((long)gyro.z); DataFlash.WriteLong((long)accel.x); DataFlash.WriteLong((long)accel.y); DataFlash.WriteLong((long)accel.z); DataFlash.WriteByte(END_BYTE); } #endif static void Log_Write_Current() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CURRENT_MSG); DataFlash.WriteInt(g.channel_throttle.control_in); DataFlash.WriteInt((int)(battery_voltage1 * 100.0)); DataFlash.WriteInt((int)(current_amps1 * 100.0)); DataFlash.WriteInt((int)current_total1); DataFlash.WriteByte(END_BYTE); } // Read a Current packet static void Log_Read_Current() { cliSerial->printf_P(PSTR("CURR: %d, %4.4f, %4.4f, %d\n"), DataFlash.ReadInt(), ((float)DataFlash.ReadInt() / 100.f), ((float)DataFlash.ReadInt() / 100.f), DataFlash.ReadInt()); } // Read an control tuning packet static void Log_Read_Control_Tuning() { float logvar; cliSerial->printf_P(PSTR("CTUN: ")); for (int y = 1; y < 10; y++) { logvar = DataFlash.ReadInt(); if(y == 7) cur_throttle = logvar; if(y < 8) logvar = logvar/100.f; if(y == 9) logvar = logvar/10000.f; cliSerial->print(logvar); cliSerial->print(comma); cliSerial->print(" "); } cliSerial->println(""); } // Read a nav tuning packet static void Log_Read_Nav_Tuning() { int16_t d[7]; for (int8_t i=0; i<7; i++) { d[i] = DataFlash.ReadInt(); } cliSerial->printf_P(PSTR("NTUN: %4.4f, %d, %4.4f, %4.4f, %4.4f, %4.4f, %4.4f,\n"), // \n d[0]/100.0, d[1], ((uint16_t)d[2])/100.0, ((uint16_t)d[3])/100.0, d[4]/100.0, d[5]/100.0, d[5]/1000.0); } // Read a performance packet static void Log_Read_Performance() { int32_t pm_time; int logvar; cliSerial->printf_P(PSTR("PM: ")); pm_time = DataFlash.ReadLong(); cliSerial->print(pm_time); cliSerial->print(comma); for (int y = 1; y <= 12; y++) { if(y < 3 || y > 7){ logvar = DataFlash.ReadInt(); }else{ logvar = DataFlash.ReadByte(); } cliSerial->print(logvar); cliSerial->print(comma); cliSerial->print(" "); } cliSerial->println(""); } // Read a command processing packet static void Log_Read_Cmd() { byte logvarb; int32_t logvarl; cliSerial->printf_P(PSTR("CMD: ")); for(int i = 1; i < 4; i++) { logvarb = DataFlash.ReadByte(); cliSerial->print(logvarb, DEC); cliSerial->print(comma); cliSerial->print(" "); } for(int i = 1; i < 4; i++) { logvarl = DataFlash.ReadLong(); cliSerial->print(logvarl, DEC); cliSerial->print(comma); cliSerial->print(" "); } cliSerial->println(""); } static void Log_Read_Startup() { byte logbyte = DataFlash.ReadByte(); if (logbyte == TYPE_AIRSTART_MSG) cliSerial->printf_P(PSTR("AIR START - ")); else if (logbyte == TYPE_GROUNDSTART_MSG) cliSerial->printf_P(PSTR("GROUND START - ")); else cliSerial->printf_P(PSTR("UNKNOWN STARTUP - ")); cliSerial->printf_P(PSTR(" %d commands in memory\n"),(int)DataFlash.ReadByte()); } // Read an attitude packet static void Log_Read_Attitude() { int16_t d[3]; d[0] = DataFlash.ReadInt(); d[1] = DataFlash.ReadInt(); d[2] = DataFlash.ReadInt(); cliSerial->printf_P(PSTR("ATT: %d, %d, %u\n"), d[0], d[1], (uint16_t)d[2]); } // Read a mode packet static void Log_Read_Mode() { cliSerial->printf_P(PSTR("MOD: ")); print_flight_mode(DataFlash.ReadByte()); } // Read a GPS packet static void Log_Read_GPS() { int32_t l[7]; byte b[2]; int16_t j,k,m; l[0] = DataFlash.ReadLong(); b[0] = DataFlash.ReadByte(); b[1] = DataFlash.ReadByte(); l[1] = DataFlash.ReadLong(); l[2] = DataFlash.ReadLong(); DataFlash.ReadInt(); l[3] = DataFlash.ReadLong(); l[4] = DataFlash.ReadLong(); l[5] = DataFlash.ReadLong(); l[6] = DataFlash.ReadLong(); j = DataFlash.ReadInt(); k = DataFlash.ReadInt(); m = DataFlash.ReadInt(); /* cliSerial->printf_P(PSTR("GPS: %ld, %d, %d, %4.7f, %4.7f, %d, %4.4f, %4.4f, %4.4f, %4.4f\n"), (long)l[0], (int)b[0], (int)b[1], l[1]/t7, l[2]/t7, (int)i, l[3]/100.0, l[4]/100.0, l[5]/100.0, l[6]/100.0); */ cliSerial->printf_P(PSTR("GPS: %ld, %d, %d, %4.7f, %4.7f, %4.4f, %4.4f, %4.4f, %4.4f\n"), (long)l[0], (int)b[0], (int)b[1], l[1]/t7, l[2]/t7, l[4]/100.0, l[3]/100.0, l[5]/100.0, l[6]/100.0); cliSerial->printf_P(PSTR("THP: %4.7f, %4.7f, %4.4f, %2.1f, %2.1f, %2.1f, %d\n"), l[1]/t7, l[2]/t7, l[3]/100.0, (float)j/100.0, (float)k/100.0, (float)m/100.0, cur_throttle); } // Read a raw accel/gyro packet static void Log_Read_Raw() { float logvar; cliSerial->printf_P(PSTR("RAW: ")); for (int y = 0; y < 6; y++) { logvar = (float)DataFlash.ReadLong() / t7; cliSerial->print(logvar); cliSerial->print(comma); cliSerial->print(" "); } cliSerial->println(""); } // Read the DataFlash log memory : Packet Parser static void Log_Read(int16_t start_page, int16_t end_page) { int packet_count = 0; #ifdef AIRFRAME_NAME cliSerial->printf_P(PSTR((AIRFRAME_NAME) #endif cliSerial->printf_P(PSTR("\n" THISFIRMWARE "\nFree RAM: %u\n"), memcheck_available_memory()); if(start_page > end_page) { packet_count = Log_Read_Process(start_page, DataFlash.df_NumPages); packet_count += Log_Read_Process(1, end_page); } else { packet_count = Log_Read_Process(start_page, end_page); } cliSerial->printf_P(PSTR("Number of packets read: %d\n"), packet_count); } // Read the DataFlash log memory : Packet Parser static int Log_Read_Process(int16_t start_page, int16_t end_page) { byte data; byte log_step = 0; int page = start_page; int packet_count = 0; DataFlash.StartRead(start_page); while (page < end_page && page != -1){ data = DataFlash.ReadByte(); switch(log_step) // This is a state machine to read the packets { case 0: if(data == HEAD_BYTE1) // Head byte 1 log_step++; break; case 1: if(data == HEAD_BYTE2) // Head byte 2 log_step++; else log_step = 0; break; case 2: if(data == LOG_ATTITUDE_MSG){ Log_Read_Attitude(); log_step++; }else if(data == LOG_MODE_MSG){ Log_Read_Mode(); log_step++; }else if(data == LOG_CONTROL_TUNING_MSG){ Log_Read_Control_Tuning(); log_step++; }else if(data == LOG_NAV_TUNING_MSG){ Log_Read_Nav_Tuning(); log_step++; }else if(data == LOG_PERFORMANCE_MSG){ Log_Read_Performance(); log_step++; }else if(data == LOG_RAW_MSG){ Log_Read_Raw(); log_step++; }else if(data == LOG_CMD_MSG){ Log_Read_Cmd(); log_step++; }else if(data == LOG_CURRENT_MSG){ Log_Read_Current(); log_step++; }else if(data == LOG_STARTUP_MSG){ Log_Read_Startup(); log_step++; }else { if(data == LOG_GPS_MSG){ Log_Read_GPS(); log_step++; }else{ cliSerial->printf_P(PSTR("Error Reading Packet: %d\n"),packet_count); log_step = 0; // Restart, we have a problem... } } break; case 3: if(data == END_BYTE){ packet_count++; }else{ cliSerial->printf_P(PSTR("Error Reading END_BYTE: %d\n"),data); } log_step = 0; // Restart sequence: new packet... break; } page = DataFlash.GetPage(); } return packet_count; } #else // LOGGING_ENABLED // dummy functions static void Log_Write_Mode(byte mode) {} static void Log_Write_Startup(byte type) {} static void Log_Write_Cmd(byte num, struct Location *wp) {} static void Log_Write_Current() {} static void Log_Write_Nav_Tuning() {} static void Log_Write_GPS( int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude, int32_t log_gps_alt, int32_t log_mix_alt, int32_t log_Ground_Speed, int32_t log_Ground_Course, byte log_Fix, byte log_NumSats) {} static void Log_Write_Performance() {} static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } static void Log_Write_Attitude(int16_t log_roll, int16_t log_pitch, uint16_t log_yaw) {} static void Log_Write_Control_Tuning() {} static void Log_Write_Raw() {} #endif // LOGGING_ENABLED #endif