/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* driver for ST VL53L1X lidar Many thanks to Pololu, https://github.com/pololu/vl53l1x-arduino and the ST example code */ #include "AP_RangeFinder_VL53L1X.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; /* The constructor also initializes the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_VL53L1X::AP_RangeFinder_VL53L1X(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, AP_HAL::OwnPtr _dev) : AP_RangeFinder_Backend(_state, _params) , dev(std::move(_dev)) {} /* detect if a VL53L1X rangefinder is connected. We'll detect by trying to take a reading on I2C. If we get a result the sensor is there. */ AP_RangeFinder_Backend *AP_RangeFinder_VL53L1X::detect(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, AP_HAL::OwnPtr dev) { if (!dev) { return nullptr; } AP_RangeFinder_VL53L1X *sensor = new AP_RangeFinder_VL53L1X(_state, _params, std::move(dev)); if (!sensor) { delete sensor; return nullptr; } sensor->dev->get_semaphore()->take_blocking(); if (!sensor->check_id() || !sensor->init()) { sensor->dev->get_semaphore()->give(); delete sensor; return nullptr; } sensor->dev->get_semaphore()->give(); return sensor; } // check sensor ID registers bool AP_RangeFinder_VL53L1X::check_id(void) { uint8_t v1, v2; v1 = read_register(0x010F); v2 = read_register(0x0110); if ((v1 != 0xEA) || (v2 != 0xCC)) { return false; } printf("Detected VL53L1X on bus 0x%x\n", dev->get_bus_id()); return true; } /* initialise sensor */ bool AP_RangeFinder_VL53L1X::init() { // setup for 2.8V operation write_register(PAD_I2C_HV__EXTSUP_CONFIG, read_register(PAD_I2C_HV__EXTSUP_CONFIG) | 0x01); // store oscillator info for later use fast_osc_frequency = read_register16(OSC_MEASURED__FAST_OSC__FREQUENCY); osc_calibrate_val = read_register16(RESULT__OSC_CALIBRATE_VAL); // static config write_register16(DSS_CONFIG__TARGET_TOTAL_RATE_MCPS, TargetRate); // should already be this value after reset write_register(GPIO__TIO_HV_STATUS, 0x02); write_register(SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS, 8); // tuning parm default write_register(SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS, 16); // tuning parm default write_register(ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM, 0x01); write_register(ALGO__RANGE_IGNORE_VALID_HEIGHT_MM, 0xFF); write_register(ALGO__RANGE_MIN_CLIP, 0); // tuning parm default write_register(ALGO__CONSISTENCY_CHECK__TOLERANCE, 2); // tuning parm default // general config write_register16(SYSTEM__THRESH_RATE_HIGH, 0x0000); write_register16(SYSTEM__THRESH_RATE_LOW, 0x0000); write_register(DSS_CONFIG__APERTURE_ATTENUATION, 0x38); // timing config write_register16(RANGE_CONFIG__SIGMA_THRESH, 360); // tuning parm default write_register16(RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS, 192); // tuning parm default // dynamic config write_register(SYSTEM__GROUPED_PARAMETER_HOLD_0, 0x01); write_register(SYSTEM__GROUPED_PARAMETER_HOLD_1, 0x01); write_register(SD_CONFIG__QUANTIFIER, 2); // tuning parm default // from VL53L1_preset_mode_timed_ranging_* // GPH is 0 after reset, but writing GPH0 and GPH1 above seem to set GPH to 1, // and things don't seem to work if we don't set GPH back to 0 (which the API // does here). write_register(SYSTEM__GROUPED_PARAMETER_HOLD, 0x00); write_register(SYSTEM__SEED_CONFIG, 1); // tuning parm default // from VL53L1_config_low_power_auto_mode write_register(SYSTEM__SEQUENCE_CONFIG, 0x8B); // VHV, PHASECAL, DSS1, RANGE write_register16(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 200 << 8); write_register(DSS_CONFIG__ROI_MODE_CONTROL, 2); // REQUESTED_EFFFECTIVE_SPADS setDistanceMode(Long); setMeasurementTimingBudget(40000); // the API triggers this change in VL53L1_init_and_start_range() once a // measurement is started; assumes MM1 and MM2 are disabled write_register16(ALGO__PART_TO_PART_RANGE_OFFSET_MM, read_register16(MM_CONFIG__OUTER_OFFSET_MM) * 4); // set continuous mode startContinuous(50); calibrated = false; // call timer() every 50ms. We expect new data to be available every 50ms dev->register_periodic_callback(50000, FUNCTOR_BIND_MEMBER(&AP_RangeFinder_VL53L1X::timer, void)); return true; } // set distance mode to Short, Medium, or Long // based on VL53L1_SetDistanceMode() bool AP_RangeFinder_VL53L1X::setDistanceMode(DistanceMode distance_mode) { // save existing timing budget uint32_t budget_us = getMeasurementTimingBudget(); switch (distance_mode) { case Short: // from VL53L1_preset_mode_standard_ranging_short_range() // timing config write_register(RANGE_CONFIG__VCSEL_PERIOD_A, 0x07); write_register(RANGE_CONFIG__VCSEL_PERIOD_B, 0x05); write_register(RANGE_CONFIG__VALID_PHASE_HIGH, 0x38); // dynamic config write_register(SD_CONFIG__WOI_SD0, 0x07); write_register(SD_CONFIG__WOI_SD1, 0x05); write_register(SD_CONFIG__INITIAL_PHASE_SD0, 6); // tuning parm default write_register(SD_CONFIG__INITIAL_PHASE_SD1, 6); // tuning parm default break; case Medium: // from VL53L1_preset_mode_standard_ranging() // timing config write_register(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0B); write_register(RANGE_CONFIG__VCSEL_PERIOD_B, 0x09); write_register(RANGE_CONFIG__VALID_PHASE_HIGH, 0x78); // dynamic config write_register(SD_CONFIG__WOI_SD0, 0x0B); write_register(SD_CONFIG__WOI_SD1, 0x09); write_register(SD_CONFIG__INITIAL_PHASE_SD0, 10); // tuning parm default write_register(SD_CONFIG__INITIAL_PHASE_SD1, 10); // tuning parm default break; case Long: // from VL53L1_preset_mode_standard_ranging_long_range() // timing config write_register(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0F); write_register(RANGE_CONFIG__VCSEL_PERIOD_B, 0x0D); write_register(RANGE_CONFIG__VALID_PHASE_HIGH, 0xB8); // dynamic config write_register(SD_CONFIG__WOI_SD0, 0x0F); write_register(SD_CONFIG__WOI_SD1, 0x0D); write_register(SD_CONFIG__INITIAL_PHASE_SD0, 14); // tuning parm default write_register(SD_CONFIG__INITIAL_PHASE_SD1, 14); // tuning parm default break; default: // unrecognized mode - do nothing return false; } // reapply timing budget setMeasurementTimingBudget(budget_us); return true; } // Set the measurement timing budget in microseconds, which is the time allowed // for one measurement. A longer timing budget allows for more accurate measurements. // based on VL53L1_SetMeasurementTimingBudgetMicroSeconds() bool AP_RangeFinder_VL53L1X::setMeasurementTimingBudget(uint32_t budget_us) { // assumes PresetMode is LOWPOWER_AUTONOMOUS if (budget_us <= TimingGuard) { return false; } uint32_t range_config_timeout_us = budget_us - TimingGuard; if (range_config_timeout_us > 1100000) { return false; // FDA_MAX_TIMING_BUDGET_US * 2 } range_config_timeout_us /= 2; // VL53L1_calc_timeout_register_values() begin uint32_t macro_period_us; // "Update Macro Period for Range A VCSEL Period" macro_period_us = calcMacroPeriod(read_register(RANGE_CONFIG__VCSEL_PERIOD_A)); // "Update Phase timeout - uses Timing A" // Timeout of 1000 is tuning parm default (TIMED_PHASECAL_CONFIG_TIMEOUT_US_DEFAULT) // via VL53L1_get_preset_mode_timing_cfg(). uint32_t phasecal_timeout_mclks = timeoutMicrosecondsToMclks(1000, macro_period_us); if (phasecal_timeout_mclks > 0xFF) { phasecal_timeout_mclks = 0xFF; } write_register(PHASECAL_CONFIG__TIMEOUT_MACROP, phasecal_timeout_mclks); // "Update MM Timing A timeout" // Timeout of 1 is tuning parm default (LOWPOWERAUTO_MM_CONFIG_TIMEOUT_US_DEFAULT) // via VL53L1_get_preset_mode_timing_cfg(). With the API, the register // actually ends up with a slightly different value because it gets assigned, // retrieved, recalculated with a different macro period, and reassigned, // but it probably doesn't matter because it seems like the MM ("mode // mitigation"?) sequence steps are disabled in low power auto mode anyway. write_register16(MM_CONFIG__TIMEOUT_MACROP_A, encodeTimeout( timeoutMicrosecondsToMclks(1, macro_period_us))); // "Update Range Timing A timeout" write_register16(RANGE_CONFIG__TIMEOUT_MACROP_A, encodeTimeout( timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us))); // "Update Macro Period for Range B VCSEL Period" macro_period_us = calcMacroPeriod(read_register(RANGE_CONFIG__VCSEL_PERIOD_B)); // "Update MM Timing B timeout" // (See earlier comment about MM Timing A timeout.) write_register16(MM_CONFIG__TIMEOUT_MACROP_B, encodeTimeout( timeoutMicrosecondsToMclks(1, macro_period_us))); // "Update Range Timing B timeout" write_register16(RANGE_CONFIG__TIMEOUT_MACROP_B, encodeTimeout( timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us))); // VL53L1_calc_timeout_register_values() end return true; } // Get the measurement timing budget in microseconds // based on VL53L1_SetMeasurementTimingBudgetMicroSeconds() uint32_t AP_RangeFinder_VL53L1X::getMeasurementTimingBudget() { // assumes PresetMode is LOWPOWER_AUTONOMOUS and these sequence steps are // enabled: VHV, PHASECAL, DSS1, RANGE // "Update Macro Period for Range A VCSEL Period" uint32_t macro_period_us = calcMacroPeriod(read_register(RANGE_CONFIG__VCSEL_PERIOD_A)); // "Get Range Timing A timeout" uint32_t range_config_timeout_us = timeoutMclksToMicroseconds(decodeTimeout( read_register16(RANGE_CONFIG__TIMEOUT_MACROP_A)), macro_period_us); return 2 * range_config_timeout_us + TimingGuard; } // Start continuous ranging measurements, with the given inter-measurement // period in milliseconds determining how often the sensor takes a measurement. void AP_RangeFinder_VL53L1X::startContinuous(uint32_t period_ms) { // fix for actual measurement period shorter than set uint32_t adjusted_period_ms = period_ms + (period_ms * 64 / 1000); // from VL53L1_set_inter_measurement_period_ms() write_register32(SYSTEM__INTERMEASUREMENT_PERIOD, adjusted_period_ms * osc_calibrate_val); write_register(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range write_register(SYSTEM__MODE_START, 0x40); // mode_range__timed } // Decode sequence step timeout in MCLKs from register value // based on VL53L1_decode_timeout() uint32_t AP_RangeFinder_VL53L1X::decodeTimeout(uint16_t reg_val) { return ((uint32_t)(reg_val & 0xFF) << (reg_val >> 8)) + 1; } // Encode sequence step timeout register value from timeout in MCLKs // based on VL53L1_encode_timeout() uint16_t AP_RangeFinder_VL53L1X::encodeTimeout(uint32_t timeout_mclks) { // encoded format: "(LSByte * 2^MSByte) + 1" uint32_t ls_byte = 0; uint16_t ms_byte = 0; if (timeout_mclks > 0) { ls_byte = timeout_mclks - 1; while ((ls_byte & 0xFFFFFF00) > 0) { ls_byte >>= 1; ms_byte++; } return (ms_byte << 8) | (ls_byte & 0xFF); } else { return 0; } } // Convert sequence step timeout from macro periods to microseconds with given // macro period in microseconds (12.12 format) // based on VL53L1_calc_timeout_us() uint32_t AP_RangeFinder_VL53L1X::timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us) { return ((uint64_t)timeout_mclks * macro_period_us + 0x800) >> 12; } // Convert sequence step timeout from microseconds to macro periods with given // macro period in microseconds (12.12 format) // based on VL53L1_calc_timeout_mclks() uint32_t AP_RangeFinder_VL53L1X::timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us) { return (((uint32_t)timeout_us << 12) + (macro_period_us >> 1)) / macro_period_us; } // Calculate macro period in microseconds (12.12 format) with given VCSEL period // assumes fast_osc_frequency has been read and stored // based on VL53L1_calc_macro_period_us() uint32_t AP_RangeFinder_VL53L1X::calcMacroPeriod(uint8_t vcsel_period) { // from VL53L1_calc_pll_period_us() // fast osc frequency in 4.12 format; PLL period in 0.24 format uint32_t pll_period_us = ((uint32_t)0x01 << 30) / fast_osc_frequency; // from VL53L1_decode_vcsel_period() uint8_t vcsel_period_pclks = (vcsel_period + 1) << 1; // VL53L1_MACRO_PERIOD_VCSEL_PERIODS = 2304 uint32_t macro_period_us = (uint32_t)2304 * pll_period_us; macro_period_us >>= 6; macro_period_us *= vcsel_period_pclks; macro_period_us >>= 6; return macro_period_us; } // "Setup ranges after the first one in low power auto mode by turning off // FW calibration steps and programming static values" // based on VL53L1_low_power_auto_setup_manual_calibration() void AP_RangeFinder_VL53L1X::setupManualCalibration(void) { uint8_t saved_vhv_init; uint8_t saved_vhv_timeout; // "save original vhv configs" saved_vhv_init = read_register(VHV_CONFIG__INIT); saved_vhv_timeout = read_register(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND); // "disable VHV init" write_register(VHV_CONFIG__INIT, saved_vhv_init & 0x7F); // "set loop bound to tuning param" write_register(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, (saved_vhv_timeout & 0x03) + (3 << 2)); // tuning parm default (LOWPOWERAUTO_VHV_LOOP_BOUND_DEFAULT) // "override phasecal" write_register(PHASECAL_CONFIG__OVERRIDE, 0x01); write_register(CAL_CONFIG__VCSEL_START, read_register(PHASECAL_RESULT__VCSEL_START)); } // check if sensor has new reading available // assumes interrupt is active low (GPIO_HV_MUX__CTRL bit 4 is 1) bool AP_RangeFinder_VL53L1X::dataReady(void) { return ((read_register(GPIO__TIO_HV_STATUS) & 0x01) == 0); } // read - return last value measured by sensor bool AP_RangeFinder_VL53L1X::get_reading(uint16_t &reading_mm) { uint8_t tries = 10; while (!dataReady()) { tries--; hal.scheduler->delay(1); if (tries == 0) { return false; } } reading_mm = read_register16(RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0); // "apply correction gain" // gain factor of 2011 is tuning parm default (VL53L1_TUNINGPARM_LITE_RANGING_GAIN_FACTOR_DEFAULT) // Basically, this appears to scale the result by 2011/2048, or about 98% // (with the 1024 added for proper rounding). reading_mm = ((uint32_t)reading_mm * 2011 + 0x0400) / 0x0800; if (!calibrated) { setupManualCalibration(); calibrated = true; } write_register(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range return true; } uint8_t AP_RangeFinder_VL53L1X::read_register(uint16_t reg) { uint8_t v = 0; uint8_t b[2] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF) }; dev->transfer(b, 2, &v, 1); return v; } uint16_t AP_RangeFinder_VL53L1X::read_register16(uint16_t reg) { uint16_t v = 0; uint8_t b[2] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF) }; dev->transfer(b, 2, (uint8_t *)&v, 2); return be16toh(v); } uint32_t AP_RangeFinder_VL53L1X::read_register32(uint16_t reg) { uint32_t v = 0; uint8_t b[2] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF) }; dev->transfer(b, 2, (uint8_t *)&v, 4); return be32toh(v); } void AP_RangeFinder_VL53L1X::write_register(uint16_t reg, uint8_t value) { uint8_t b[3] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF), value }; dev->transfer(b, 3, nullptr, 0); } void AP_RangeFinder_VL53L1X::write_register16(uint16_t reg, uint16_t value) { uint8_t b[4] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF), uint8_t(value >> 8), uint8_t(value & 0xFF) }; dev->transfer(b, 4, nullptr, 0); } void AP_RangeFinder_VL53L1X::write_register32(uint16_t reg, uint32_t value) { uint8_t b[6] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF), uint8_t((value >> 24) & 0xFF), uint8_t((value >> 16) & 0xFF), uint8_t((value >> 8) & 0xFF), uint8_t((value) & 0xFF) }; dev->transfer(b, 6, nullptr, 0); } /* timer called at 20Hz */ void AP_RangeFinder_VL53L1X::timer(void) { uint16_t range_mm; if ((get_reading(range_mm)) && (range_mm <= 4000)) { sum_mm += range_mm; counter++; } } /* update the state of the sensor */ void AP_RangeFinder_VL53L1X::update(void) { WITH_SEMAPHORE(_sem); if (counter > 0) { state.distance_cm = sum_mm / (10*counter); state.last_reading_ms = AP_HAL::millis(); update_status(); sum_mm = 0; counter = 0; } else if (AP_HAL::millis() - state.last_reading_ms > 200) { // if no updates for 0.2s set no-data set_status(RangeFinder::RangeFinder_NoData); } }