#include #include #include "AP_Mount_SoloGimbal.h" #if HAL_SOLO_GIMBAL_ENABLED #include "SoloGimbal.h" #include #include #include #include extern const AP_HAL::HAL& hal; AP_Mount_SoloGimbal::AP_Mount_SoloGimbal(AP_Mount &frontend, AP_Mount::mount_state &state, uint8_t instance) : AP_Mount_Backend(frontend, state, instance), _gimbal() {} // init - performs any required initialisation for this instance void AP_Mount_SoloGimbal::init() { _initialised = true; set_mode((enum MAV_MOUNT_MODE)_state._default_mode.get()); } void AP_Mount_SoloGimbal::update_fast() { _gimbal.update_fast(); } // update mount position - should be called periodically void AP_Mount_SoloGimbal::update() { // exit immediately if not initialised if (!_initialised) { return; } // update based on mount mode switch(get_mode()) { // move mount to a "retracted" position. we do not implement a separate servo based retract mechanism case MAV_MOUNT_MODE_RETRACT: _gimbal.set_lockedToBody(true); break; // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: { _gimbal.set_lockedToBody(false); const Vector3f &target = _state._neutral_angles.get(); _angle_ef_target_rad.x = ToRad(target.x); _angle_ef_target_rad.y = ToRad(target.y); _angle_ef_target_rad.z = ToRad(target.z); } break; // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: _gimbal.set_lockedToBody(false); // do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS break; // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: _gimbal.set_lockedToBody(false); // update targets using pilot's rc inputs update_targets_from_rc(); break; // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: _gimbal.set_lockedToBody(false); if (calc_angle_to_roi_target(_angle_ef_target_rad, true, true)) { } break; case MAV_MOUNT_MODE_SYSID_TARGET: if (calc_angle_to_sysid_target(_angle_ef_target_rad, true, true)) { } break; default: // we do not know this mode so do nothing break; } } // has_pan_control - returns true if this mount can control it's pan (required for multicopters) bool AP_Mount_SoloGimbal::has_pan_control() const { // we do not have yaw control return false; } // set_mode - sets mount's mode void AP_Mount_SoloGimbal::set_mode(enum MAV_MOUNT_MODE mode) { // exit immediately if not initialised if (!_initialised) { return; } // record the mode change _state._mode = mode; } // send_mount_status - called to allow mounts to send their status to GCS using the MOUNT_STATUS message void AP_Mount_SoloGimbal::send_mount_status(mavlink_channel_t chan) { if (_gimbal.aligned()) { mavlink_msg_mount_status_send(chan, 0, 0, degrees(_angle_ef_target_rad.y)*100, degrees(_angle_ef_target_rad.x)*100, degrees(_angle_ef_target_rad.z)*100); } // block heartbeat from transmitting to the GCS GCS_MAVLINK::disable_channel_routing(chan); } /* handle a GIMBAL_REPORT message */ void AP_Mount_SoloGimbal::handle_gimbal_report(mavlink_channel_t chan, const mavlink_message_t &msg) { _gimbal.update_target(_angle_ef_target_rad); _gimbal.receive_feedback(chan,msg); AP_Logger *logger = AP_Logger::get_singleton(); if (logger == nullptr) { return; } if(!_params_saved && logger->logging_started()) { _gimbal.fetch_params(); //last parameter save might not be stored in logger so retry _params_saved = true; } if (_gimbal.get_log_dt() > 1.0f/25.0f) { _gimbal.write_logs(); } } void AP_Mount_SoloGimbal::handle_param_value(const mavlink_message_t &msg) { _gimbal.handle_param_value(msg); } /* handle a GIMBAL_REPORT message */ void AP_Mount_SoloGimbal::handle_gimbal_torque_report(mavlink_channel_t chan, const mavlink_message_t &msg) { _gimbal.disable_torque_report(); } /* send a GIMBAL_REPORT message to the GCS */ void AP_Mount_SoloGimbal::send_gimbal_report(mavlink_channel_t chan) { } #endif // HAL_SOLO_GIMBAL_ENABLED