/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * NavEKF based AHRS (Attitude Heading Reference System) interface for * ArduPilot * */ #include #include "AP_AHRS.h" #include "AP_AHRS_View.h" #include #include #include #include #include #include #if AP_AHRS_NAVEKF_AVAILABLE #define ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD radians(10) #define ATTITUDE_CHECK_THRESH_YAW_RAD radians(20) extern const AP_HAL::HAL& hal; // constructor AP_AHRS_NavEKF::AP_AHRS_NavEKF(uint8_t flags) : AP_AHRS_DCM(), _ekf_flags(flags) { #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduSub) // Copter and Sub force the use of EKF _ekf_flags |= AP_AHRS_NavEKF::FLAG_ALWAYS_USE_EKF; #endif _dcm_matrix.identity(); } // init sets up INS board orientation void AP_AHRS_NavEKF::init() { #if !HAL_NAVEKF2_AVAILABLE && HAL_NAVEKF3_AVAILABLE if (_ekf_type.get() == 2) { _ekf_type.set(3); EKF3.set_enable(true); } #elif !HAL_NAVEKF3_AVAILABLE && HAL_NAVEKF2_AVAILABLE if (_ekf_type.get() == 3) { _ekf_type.set(2); EKF2.set_enable(true); } #endif // init parent class AP_AHRS_DCM::init(); } // return the smoothed gyro vector corrected for drift const Vector3f &AP_AHRS_NavEKF::get_gyro(void) const { if (active_EKF_type() == EKFType::NONE) { return AP_AHRS_DCM::get_gyro(); } return _gyro_estimate; } const Matrix3f &AP_AHRS_NavEKF::get_rotation_body_to_ned(void) const { if (active_EKF_type() == EKFType::NONE) { return AP_AHRS_DCM::get_rotation_body_to_ned(); } return _dcm_matrix; } const Vector3f &AP_AHRS_NavEKF::get_gyro_drift(void) const { if (active_EKF_type() == EKFType::NONE) { return AP_AHRS_DCM::get_gyro_drift(); } return _gyro_drift; } // reset the current gyro drift estimate // should be called if gyro offsets are recalculated void AP_AHRS_NavEKF::reset_gyro_drift(void) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); // update DCM AP_AHRS_DCM::reset_gyro_drift(); // reset the EKF gyro bias states #if HAL_NAVEKF2_AVAILABLE EKF2.resetGyroBias(); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.resetGyroBias(); #endif } void AP_AHRS_NavEKF::update(bool skip_ins_update) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); // drop back to normal priority if we were boosted by the INS // calling delay_microseconds_boost() hal.scheduler->boost_end(); // EKF1 is no longer supported - handle case where it is selected if (_ekf_type == 1) { _ekf_type.set(2); } update_DCM(skip_ins_update); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL update_SITL(); #endif if (_ekf_type == 2) { // if EK2 is primary then run EKF2 first to give it CPU // priority #if HAL_NAVEKF2_AVAILABLE update_EKF2(); #endif #if HAL_NAVEKF3_AVAILABLE update_EKF3(); #endif } else { // otherwise run EKF3 first #if HAL_NAVEKF3_AVAILABLE update_EKF3(); #endif #if HAL_NAVEKF2_AVAILABLE update_EKF2(); #endif } #if AP_MODULE_SUPPORTED // call AHRS_update hook if any AP_Module::call_hook_AHRS_update(*this); #endif // push gyros if optical flow present if (hal.opticalflow) { const Vector3f &exported_gyro_bias = get_gyro_drift(); hal.opticalflow->push_gyro_bias(exported_gyro_bias.x, exported_gyro_bias.y); } if (_view != nullptr) { // update optional alternative attitude view _view->update(skip_ins_update); } #if !HAL_MINIMIZE_FEATURES && AP_AHRS_NAVEKF_AVAILABLE // update NMEA output update_nmea_out(); #endif } void AP_AHRS_NavEKF::update_DCM(bool skip_ins_update) { // we need to restore the old DCM attitude values as these are // used internally in DCM to calculate error values for gyro drift // correction roll = _dcm_attitude.x; pitch = _dcm_attitude.y; yaw = _dcm_attitude.z; update_cd_values(); AP_AHRS_DCM::update(skip_ins_update); // keep DCM attitude available for get_secondary_attitude() _dcm_attitude = {roll, pitch, yaw}; } #if HAL_NAVEKF2_AVAILABLE void AP_AHRS_NavEKF::update_EKF2(void) { if (!_ekf2_started) { // wait 1 second for DCM to output a valid tilt error estimate if (start_time_ms == 0) { start_time_ms = AP_HAL::millis(); } if (AP_HAL::millis() - start_time_ms > startup_delay_ms || _force_ekf) { _ekf2_started = EKF2.InitialiseFilter(); if (_force_ekf) { return; } } } if (_ekf2_started) { EKF2.UpdateFilter(); if (active_EKF_type() == EKFType::TWO) { Vector3f eulers; EKF2.getRotationBodyToNED(_dcm_matrix); EKF2.getEulerAngles(-1,eulers); roll = eulers.x; pitch = eulers.y; yaw = eulers.z; update_cd_values(); update_trig(); // Use the primary EKF to select the primary gyro const int8_t primary_imu = EKF2.getPrimaryCoreIMUIndex(); const AP_InertialSensor &_ins = AP::ins(); // get gyro bias for primary EKF and change sign to give gyro drift // Note sign convention used by EKF is bias = measurement - truth _gyro_drift.zero(); EKF2.getGyroBias(-1,_gyro_drift); _gyro_drift = -_gyro_drift; // calculate corrected gyro estimate for get_gyro() _gyro_estimate.zero(); if (primary_imu == -1 || !_ins.get_gyro_health(primary_imu)) { // the primary IMU is undefined so use an uncorrected default value from the INS library _gyro_estimate = _ins.get_gyro(); } else { // use the same IMU as the primary EKF and correct for gyro drift _gyro_estimate = _ins.get_gyro(primary_imu) + _gyro_drift; } // get z accel bias estimate from active EKF (this is usually for the primary IMU) float abias = 0; EKF2.getAccelZBias(-1,abias); // This EKF is currently using primary_imu, and abias applies to only that IMU for (uint8_t i=0; i<_ins.get_accel_count(); i++) { Vector3f accel = _ins.get_accel(i); if (i == primary_imu) { accel.z -= abias; } if (_ins.get_accel_health(i)) { _accel_ef_ekf[i] = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * accel; } } _accel_ef_ekf_blended = _accel_ef_ekf[primary_imu>=0?primary_imu:_ins.get_primary_accel()]; nav_filter_status filt_state; EKF2.getFilterStatus(-1,filt_state); AP_Notify::flags.gps_fusion = filt_state.flags.using_gps; // Drives AP_Notify flag for usable GPS. AP_Notify::flags.gps_glitching = filt_state.flags.gps_glitching; AP_Notify::flags.have_pos_abs = filt_state.flags.horiz_pos_abs; } } } #endif #if HAL_NAVEKF3_AVAILABLE void AP_AHRS_NavEKF::update_EKF3(void) { if (!_ekf3_started) { // wait 1 second for DCM to output a valid tilt error estimate if (start_time_ms == 0) { start_time_ms = AP_HAL::millis(); } if (AP_HAL::millis() - start_time_ms > startup_delay_ms || _force_ekf) { _ekf3_started = EKF3.InitialiseFilter(); if (_force_ekf) { return; } } } if (_ekf3_started) { EKF3.UpdateFilter(); if (active_EKF_type() == EKFType::THREE) { Vector3f eulers; EKF3.getRotationBodyToNED(_dcm_matrix); EKF3.getEulerAngles(-1,eulers); roll = eulers.x; pitch = eulers.y; yaw = eulers.z; update_cd_values(); update_trig(); const AP_InertialSensor &_ins = AP::ins(); // Use the primary EKF to select the primary gyro const int8_t primary_imu = EKF3.getPrimaryCoreIMUIndex(); // get gyro bias for primary EKF and change sign to give gyro drift // Note sign convention used by EKF is bias = measurement - truth _gyro_drift.zero(); EKF3.getGyroBias(-1,_gyro_drift); _gyro_drift = -_gyro_drift; // calculate corrected gyro estimate for get_gyro() _gyro_estimate.zero(); if (primary_imu == -1 || !_ins.get_gyro_health(primary_imu)) { // the primary IMU is undefined so use an uncorrected default value from the INS library _gyro_estimate = _ins.get_gyro(); } else { // use the same IMU as the primary EKF and correct for gyro drift _gyro_estimate = _ins.get_gyro(primary_imu) + _gyro_drift; } // get 3-axis accel bias festimates for active EKF (this is usually for the primary IMU) Vector3f abias; EKF3.getAccelBias(-1,abias); // This EKF uses the primary IMU // Eventually we will run a separate instance of the EKF for each IMU and do the selection and blending of EKF outputs upstream // update _accel_ef_ekf for (uint8_t i=0; i<_ins.get_accel_count(); i++) { Vector3f accel = _ins.get_accel(i); if (i==_ins.get_primary_accel()) { accel -= abias; } if (_ins.get_accel_health(i)) { _accel_ef_ekf[i] = _dcm_matrix * accel; } } _accel_ef_ekf_blended = _accel_ef_ekf[_ins.get_primary_accel()]; nav_filter_status filt_state; EKF3.getFilterStatus(-1,filt_state); AP_Notify::flags.gps_fusion = filt_state.flags.using_gps; // Drives AP_Notify flag for usable GPS. AP_Notify::flags.gps_glitching = filt_state.flags.gps_glitching; AP_Notify::flags.have_pos_abs = filt_state.flags.horiz_pos_abs; } } } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL void AP_AHRS_NavEKF::update_SITL(void) { if (_sitl == nullptr) { _sitl = AP::sitl(); if (_sitl == nullptr) { return; } } const struct SITL::sitl_fdm &fdm = _sitl->state; const AP_InertialSensor &_ins = AP::ins(); if (active_EKF_type() == EKFType::SITL) { fdm.quaternion.rotation_matrix(_dcm_matrix); _dcm_matrix = _dcm_matrix * get_rotation_vehicle_body_to_autopilot_body(); _dcm_matrix.to_euler(&roll, &pitch, &yaw); update_cd_values(); update_trig(); _gyro_drift.zero(); _gyro_estimate = _ins.get_gyro(); for (uint8_t i=0; iodom_enable) { // use SITL states to write body frame odometry data at 20Hz uint32_t timeStamp_ms = AP_HAL::millis(); if (timeStamp_ms - _last_body_odm_update_ms > 50) { const float quality = 100.0f; const Vector3f posOffset(0.0f, 0.0f, 0.0f); const float delTime = 0.001f * (timeStamp_ms - _last_body_odm_update_ms); _last_body_odm_update_ms = timeStamp_ms; timeStamp_ms -= (timeStamp_ms - _last_body_odm_update_ms)/2; // correct for first order hold average delay Vector3f delAng = _ins.get_gyro(); delAng *= delTime; // rotate earth velocity into body frame and calculate delta position Matrix3f Tbn; Tbn.from_euler(radians(fdm.rollDeg),radians(fdm.pitchDeg),radians(fdm.yawDeg)); const Vector3f earth_vel(fdm.speedN,fdm.speedE,fdm.speedD); const Vector3f delPos = Tbn.transposed() * (earth_vel * delTime); // write to EKF EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, 0, posOffset); } } #endif // HAL_NAVEKF3_AVAILABLE } #endif // CONFIG_HAL_BOARD // accelerometer values in the earth frame in m/s/s const Vector3f &AP_AHRS_NavEKF::get_accel_ef(uint8_t i) const { if (active_EKF_type() == EKFType::NONE) { return AP_AHRS_DCM::get_accel_ef(i); } return _accel_ef_ekf[i]; } // blended accelerometer values in the earth frame in m/s/s const Vector3f &AP_AHRS_NavEKF::get_accel_ef_blended(void) const { if (active_EKF_type() == EKFType::NONE) { return AP_AHRS_DCM::get_accel_ef_blended(); } return _accel_ef_ekf_blended; } void AP_AHRS_NavEKF::reset(bool recover_eulers) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); AP_AHRS_DCM::reset(recover_eulers); _dcm_attitude = {roll, pitch, yaw}; #if HAL_NAVEKF2_AVAILABLE if (_ekf2_started) { _ekf2_started = EKF2.InitialiseFilter(); } #endif #if HAL_NAVEKF3_AVAILABLE if (_ekf3_started) { _ekf3_started = EKF3.InitialiseFilter(); } #endif } // reset the current attitude, used on new IMU calibration void AP_AHRS_NavEKF::reset_attitude(const float &_roll, const float &_pitch, const float &_yaw) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); AP_AHRS_DCM::reset_attitude(_roll, _pitch, _yaw); _dcm_attitude = {roll, pitch, yaw}; #if HAL_NAVEKF2_AVAILABLE if (_ekf2_started) { _ekf2_started = EKF2.InitialiseFilter(); } #endif #if HAL_NAVEKF3_AVAILABLE if (_ekf3_started) { _ekf3_started = EKF3.InitialiseFilter(); } #endif } // dead-reckoning support bool AP_AHRS_NavEKF::get_position(struct Location &loc) const { switch (active_EKF_type()) { case EKFType::NONE: return AP_AHRS_DCM::get_position(loc); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (EKF2.getLLH(loc)) { return true; } break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (EKF3.getLLH(loc)) { return true; } break; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; loc = {}; loc.lat = fdm.latitude * 1e7; loc.lng = fdm.longitude * 1e7; loc.alt = fdm.altitude*100; return true; } break; } #endif } // fall back to position from DCM if (!always_use_EKF()) { return AP_AHRS_DCM::get_position(loc); } return false; } // status reporting of estimated errors float AP_AHRS_NavEKF::get_error_rp(void) const { return AP_AHRS_DCM::get_error_rp(); } float AP_AHRS_NavEKF::get_error_yaw(void) const { return AP_AHRS_DCM::get_error_yaw(); } // return a wind estimation vector, in m/s Vector3f AP_AHRS_NavEKF::wind_estimate(void) const { Vector3f wind; switch (active_EKF_type()) { case EKFType::NONE: wind = AP_AHRS_DCM::wind_estimate(); break; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: wind.zero(); break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getWind(-1,wind); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getWind(-1,wind); break; #endif } return wind; } // return an airspeed estimate if available. return true // if we have an estimate bool AP_AHRS_NavEKF::airspeed_estimate(float &airspeed_ret) const { return AP_AHRS_DCM::airspeed_estimate(airspeed_ret); } // true if compass is being used bool AP_AHRS_NavEKF::use_compass(void) { switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.use_compass(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.use_compass(); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return true; #endif } return AP_AHRS_DCM::use_compass(); } // return the quaternion defining the rotation from NED to XYZ (body) axes bool AP_AHRS_NavEKF::get_quaternion(Quaternion &quat) const { switch (active_EKF_type()) { case EKFType::NONE: return AP_AHRS_DCM::get_quaternion(quat); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getQuaternion(-1, quat); return _ekf2_started; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getQuaternion(-1, quat); return _ekf3_started; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; quat = fdm.quaternion; return true; } else { return false; } #endif } // since there is no default case above, this is unreachable return false; } // return secondary attitude solution if available, as eulers in radians bool AP_AHRS_NavEKF::get_secondary_attitude(Vector3f &eulers) const { switch (active_EKF_type()) { case EKFType::NONE: // EKF is secondary #if HAL_NAVEKF2_AVAILABLE EKF2.getEulerAngles(-1, eulers); return _ekf2_started; #else return false; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: #endif // DCM is secondary eulers = _dcm_attitude; return true; } // since there is no default case above, this is unreachable return false; } // return secondary attitude solution if available, as quaternion bool AP_AHRS_NavEKF::get_secondary_quaternion(Quaternion &quat) const { switch (active_EKF_type()) { case EKFType::NONE: // EKF is secondary #if HAL_NAVEKF2_AVAILABLE EKF2.getQuaternion(-1, quat); return _ekf2_started; #else return false; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: #endif // DCM is secondary quat.from_rotation_matrix(AP_AHRS_DCM::get_rotation_body_to_ned()); return true; } // since there is no default case above, this is unreachable return false; } // return secondary position solution if available bool AP_AHRS_NavEKF::get_secondary_position(struct Location &loc) const { switch (active_EKF_type()) { case EKFType::NONE: // EKF is secondary #if HAL_NAVEKF2_AVAILABLE EKF2.getLLH(loc); return _ekf2_started; #else return false; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: #endif // return DCM position AP_AHRS_DCM::get_position(loc); return true; } // since there is no default case above, this is unreachable return false; } // EKF has a better ground speed vector estimate Vector2f AP_AHRS_NavEKF::groundspeed_vector(void) { Vector3f vec; switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getVelNED(-1,vec); return Vector2f(vec.x, vec.y); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getVelNED(-1,vec); return Vector2f(vec.x, vec.y); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; return Vector2f(fdm.speedN, fdm.speedE); } break; } #endif } return AP_AHRS_DCM::groundspeed_vector(); } // set the EKF's origin location in 10e7 degrees. This should only // be called when the EKF has no absolute position reference (i.e. GPS) // from which to decide the origin on its own bool AP_AHRS_NavEKF::set_origin(const Location &loc) { #if HAL_NAVEKF2_AVAILABLE const bool ret2 = EKF2.setOriginLLH(loc); #endif #if HAL_NAVEKF3_AVAILABLE const bool ret3 = EKF3.setOriginLLH(loc); #endif // return success if active EKF's origin was set switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return ret2; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return ret3; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: // never allow origin set in SITL. The origin is set by the // simulation backend return false; #endif } // since there is no default case above, this is unreachable return false; } // return true if inertial navigation is active bool AP_AHRS_NavEKF::have_inertial_nav(void) const { return active_EKF_type() != EKFType::NONE; } // return a ground velocity in meters/second, North/East/Down // order. Must only be called if have_inertial_nav() is true bool AP_AHRS_NavEKF::get_velocity_NED(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getVelNED(-1,vec); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getVelNED(-1,vec); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; vec = Vector3f(fdm.speedN, fdm.speedE, fdm.speedD); return true; #endif } return AP_AHRS_DCM::get_velocity_NED(vec); } // returns the expected NED magnetic field bool AP_AHRS_NavEKF::get_mag_field_NED(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getMagNED(-1,vec); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getMagNED(-1,vec); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return false; #endif } return false; } // returns the estimated magnetic field offsets in body frame bool AP_AHRS_NavEKF::get_mag_field_correction(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getMagXYZ(-1,vec); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getMagXYZ(-1,vec); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return false; #endif } // since there is no default case above, this is unreachable return false; } // Get a derivative of the vertical position which is kinematically consistent with the vertical position is required by some control loops. // This is different to the vertical velocity from the EKF which is not always consistent with the verical position due to the various errors that are being corrected for. bool AP_AHRS_NavEKF::get_vert_pos_rate(float &velocity) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: velocity = EKF2.getPosDownDerivative(-1); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: velocity = EKF3.getPosDownDerivative(-1); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; velocity = fdm.speedD; return true; } else { return false; } #endif } // since there is no default case above, this is unreachable return false; } // get latest height above ground level estimate in metres and a validity flag bool AP_AHRS_NavEKF::get_hagl(float &height) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getHAGL(height); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getHAGL(height); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; height = fdm.altitude - get_home().alt*0.01f; return true; } #endif } // since there is no default case above, this is unreachable return false; } // return a relative ground position to the origin in meters // North/East/Down order. bool AP_AHRS_NavEKF::get_relative_position_NED_origin(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { Vector2f posNE; float posD; if (EKF2.getPosNE(-1,posNE) && EKF2.getPosD(-1,posD)) { // position is valid vec.x = posNE.x; vec.y = posNE.y; vec.z = posD; return true; } return false; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { Vector2f posNE; float posD; if (EKF3.getPosNE(-1,posNE) && EKF3.getPosD(-1,posD)) { // position is valid vec.x = posNE.x; vec.y = posNE.y; vec.z = posD; return true; } return false; } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { if (!_sitl) { return false; } Location loc, orgn; if (!get_position(loc) || !get_origin(orgn)) { return false; } const Vector2f diff2d = orgn.get_distance_NE(loc); const struct SITL::sitl_fdm &fdm = _sitl->state; vec = Vector3f(diff2d.x, diff2d.y, -(fdm.altitude - orgn.alt*0.01f)); return true; } #endif } // since there is no default case above, this is unreachable return false; } // return a relative ground position to the home in meters // North/East/Down order. bool AP_AHRS_NavEKF::get_relative_position_NED_home(Vector3f &vec) const { Location originLLH; Vector3f originNED; if (!get_relative_position_NED_origin(originNED) || !get_origin(originLLH)) { return false; } const Vector3f offset = originLLH.get_distance_NED(_home); vec.x = originNED.x - offset.x; vec.y = originNED.y - offset.y; vec.z = originNED.z - offset.z; return true; } // write a relative ground position estimate to the origin in meters, North/East order // return true if estimate is valid bool AP_AHRS_NavEKF::get_relative_position_NE_origin(Vector2f &posNE) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { bool position_is_valid = EKF2.getPosNE(-1,posNE); return position_is_valid; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { bool position_is_valid = EKF3.getPosNE(-1,posNE); return position_is_valid; } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { Location loc, orgn; if (!get_position(loc) || !get_origin(orgn)) { return false; } posNE = orgn.get_distance_NE(loc); return true; } #endif } // since there is no default case above, this is unreachable return false; } // return a relative ground position to the home in meters // North/East order. bool AP_AHRS_NavEKF::get_relative_position_NE_home(Vector2f &posNE) const { Location originLLH; Vector2f originNE; if (!get_relative_position_NE_origin(originNE) || !get_origin(originLLH)) { return false; } const Vector2f offset = originLLH.get_distance_NE(_home); posNE.x = originNE.x - offset.x; posNE.y = originNE.y - offset.y; return true; } // write a relative ground position estimate to the origin in meters, North/East order // write a relative ground position to the origin in meters, Down // return true if the estimate is valid bool AP_AHRS_NavEKF::get_relative_position_D_origin(float &posD) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { bool position_is_valid = EKF2.getPosD(-1,posD); return position_is_valid; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { bool position_is_valid = EKF3.getPosD(-1,posD); return position_is_valid; } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; Location orgn; if (!get_origin(orgn)) { return false; } posD = -(fdm.altitude - orgn.alt*0.01f); return true; } #endif } // since there is no default case above, this is unreachable return false; } // write a relative ground position to home in meters, Down // will use the barometer if the EKF isn't available void AP_AHRS_NavEKF::get_relative_position_D_home(float &posD) const { Location originLLH; float originD; if (!get_relative_position_D_origin(originD) || !get_origin(originLLH)) { posD = -AP::baro().get_altitude(); return; } posD = originD - ((originLLH.alt - _home.alt) * 0.01f); return; } /* canonicalise _ekf_type, forcing it to be 0, 2 or 3 type 1 has been deprecated */ AP_AHRS_NavEKF::EKFType AP_AHRS_NavEKF::ekf_type(void) const { EKFType type = (EKFType)_ekf_type.get(); switch (type) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return type; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return type; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return type; #endif case EKFType::NONE: if (always_use_EKF()) { #if HAL_NAVEKF2_AVAILABLE return EKFType::TWO; #elif HAL_NAVEKF3_AVAILABLE return EKFType::THREE; #endif } return EKFType::NONE; } // we can get to here if the user has mis-set AHRS_EKF_TYPE - any // value above 3 will get to here. TWO is returned here for no // better reason than "tradition". #if HAL_NAVEKF2_AVAILABLE return EKFType::TWO; #elif HAL_NAVEKF3_AVAILABLE return EKFType::THREE; #else return EKFType::NONE; #endif } AP_AHRS_NavEKF::EKFType AP_AHRS_NavEKF::active_EKF_type(void) const { EKFType ret = EKFType::NONE; switch (ekf_type()) { case EKFType::NONE: return EKFType::NONE; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { // do we have an EKF2 yet? if (!_ekf2_started) { return EKFType::NONE; } if (always_use_EKF()) { uint16_t ekf2_faults; EKF2.getFilterFaults(-1,ekf2_faults); if (ekf2_faults == 0) { ret = EKFType::TWO; } } else if (EKF2.healthy()) { ret = EKFType::TWO; } break; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { // do we have an EKF3 yet? if (!_ekf3_started) { return EKFType::NONE; } if (always_use_EKF()) { uint16_t ekf3_faults; EKF3.getFilterFaults(-1,ekf3_faults); if (ekf3_faults == 0) { ret = EKFType::THREE; } } else if (EKF3.healthy()) { ret = EKFType::THREE; } break; } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: ret = EKFType::SITL; break; #endif } /* fixed wing and rover when in fly_forward mode will fall back to DCM if the EKF doesn't have GPS. This is the safest option as DCM is very robust. Note that we also check the filter status when fly_forward is false and we are disarmed. This is to ensure that the arming checks do wait for good GPS position on fixed wing and rover */ if (ret != EKFType::NONE && (_vehicle_class == AHRS_VEHICLE_FIXED_WING || _vehicle_class == AHRS_VEHICLE_GROUND) && (_flags.fly_forward || !hal.util->get_soft_armed())) { nav_filter_status filt_state; #if HAL_NAVEKF2_AVAILABLE if (ret == EKFType::TWO) { EKF2.getFilterStatus(-1,filt_state); } #endif #if HAL_NAVEKF3_AVAILABLE if (ret == EKFType::THREE) { EKF3.getFilterStatus(-1,filt_state); } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (ret == EKFType::SITL) { get_filter_status(filt_state); } #endif if (hal.util->get_soft_armed() && (!filt_state.flags.using_gps || !filt_state.flags.horiz_pos_abs) && AP::gps().status() >= AP_GPS::GPS_OK_FIX_3D) { // if the EKF is not fusing GPS or doesn't have a 2D fix // and we have a 3D lock, then plane and rover would // prefer to use the GPS position from DCM. This is a // safety net while some issues with the EKF get sorted // out return EKFType::NONE; } if (hal.util->get_soft_armed() && filt_state.flags.const_pos_mode) { return EKFType::NONE; } if (!filt_state.flags.attitude || !filt_state.flags.vert_vel || !filt_state.flags.vert_pos) { return EKFType::NONE; } if (!filt_state.flags.horiz_vel || (!filt_state.flags.horiz_pos_abs && !filt_state.flags.horiz_pos_rel)) { if ((!_compass || !_compass->use_for_yaw()) && AP::gps().status() >= AP_GPS::GPS_OK_FIX_3D && AP::gps().ground_speed() < 2) { /* special handling for non-compass mode when sitting still. The EKF may not yet have aligned its yaw. We accept EKF as healthy to allow arming. Once we reach speed the EKF should get yaw alignment */ if (filt_state.flags.gps_quality_good) { return ret; } } return EKFType::NONE; } } return ret; } /* check if the AHRS subsystem is healthy */ bool AP_AHRS_NavEKF::healthy(void) const { // If EKF is started we switch away if it reports unhealthy. This could be due to bad // sensor data. If EKF reversion is inhibited, we only switch across if the EKF encounters // an internal processing error, but not for bad sensor data. switch (ekf_type()) { case EKFType::NONE: return AP_AHRS_DCM::healthy(); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { bool ret = _ekf2_started && EKF2.healthy(); if (!ret) { return false; } if ((_vehicle_class == AHRS_VEHICLE_FIXED_WING || _vehicle_class == AHRS_VEHICLE_GROUND) && active_EKF_type() != EKFType::TWO) { // on fixed wing we want to be using EKF to be considered // healthy if EKF is enabled return false; } return true; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { bool ret = _ekf3_started && EKF3.healthy(); if (!ret) { return false; } if ((_vehicle_class == AHRS_VEHICLE_FIXED_WING || _vehicle_class == AHRS_VEHICLE_GROUND) && active_EKF_type() != EKFType::THREE) { // on fixed wing we want to be using EKF to be considered // healthy if EKF is enabled return false; } return true; } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return true; #endif } return AP_AHRS_DCM::healthy(); } bool AP_AHRS_NavEKF::prearm_healthy(void) const { bool prearm_health = false; switch (ekf_type()) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: #endif case EKFType::NONE: prearm_health = true; break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (_ekf2_started && EKF2.all_cores_healthy()) { prearm_health = true; } break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (_ekf3_started && EKF3.all_cores_healthy()) { prearm_health = true; } break; #endif } return prearm_health && healthy(); } void AP_AHRS_NavEKF::set_ekf_use(bool setting) { _ekf_type.set(setting?1:0); } // true if the AHRS has completed initialisation bool AP_AHRS_NavEKF::initialised(void) const { switch (ekf_type()) { case EKFType::NONE: return true; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // initialisation complete 10sec after ekf has started return (_ekf2_started && (AP_HAL::millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS)); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // initialisation complete 10sec after ekf has started return (_ekf3_started && (AP_HAL::millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS)); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return true; #endif } return false; }; // get_filter_status : returns filter status as a series of flags bool AP_AHRS_NavEKF::get_filter_status(nav_filter_status &status) const { switch (ekf_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getFilterStatus(-1,status); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getFilterStatus(-1,status); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: memset(&status, 0, sizeof(status)); status.flags.attitude = 1; status.flags.horiz_vel = 1; status.flags.vert_vel = 1; status.flags.horiz_pos_rel = 1; status.flags.horiz_pos_abs = 1; status.flags.vert_pos = 1; status.flags.pred_horiz_pos_rel = 1; status.flags.pred_horiz_pos_abs = 1; status.flags.using_gps = 1; return true; #endif } return false; } // write optical flow data to EKF void AP_AHRS_NavEKF::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, posOffset); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, posOffset); #endif } // write body frame odometry measurements to the EKF void AP_AHRS_NavEKF::writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, uint16_t delay_ms, const Vector3f &posOffset) { #if HAL_NAVEKF3_AVAILABLE EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, delay_ms, posOffset); #endif } // Write position and quaternion data from an external navigation system void AP_AHRS_NavEKF::writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeExtNavData(pos, quat, posErr, angErr, timeStamp_ms, delay_ms, resetTime_ms); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeExtNavData(pos, quat, posErr, angErr, timeStamp_ms, delay_ms, resetTime_ms); #endif } // Writes the default equivalent airspeed in m/s to be used in forward flight if a measured airspeed is required and not available. void AP_AHRS_NavEKF::writeDefaultAirSpeed(float airspeed) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeDefaultAirSpeed(airspeed); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeDefaultAirSpeed(airspeed); #endif } // Write velocity data from an external navigation system void AP_AHRS_NavEKF::writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeExtNavVelData(vel, err, timeStamp_ms, delay_ms); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeExtNavVelData(vel, err, timeStamp_ms, delay_ms); #endif } // inhibit GPS usage uint8_t AP_AHRS_NavEKF::setInhibitGPS(void) { switch (ekf_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.setInhibitGPS(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.setInhibitGPS(); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return 0; #endif } // since there is no default case above, this is unreachable return 0; } // get speed limit void AP_AHRS_NavEKF::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const { switch (ekf_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler); break; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: // same as EKF2 for no optical flow ekfGndSpdLimit = 400.0f; ekfNavVelGainScaler = 1.0f; break; #endif } } // get compass offset estimates // true if offsets are valid bool AP_AHRS_NavEKF::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const { switch (ekf_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getMagOffsets(mag_idx, magOffsets); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getMagOffsets(mag_idx, magOffsets); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: magOffsets.zero(); return true; #endif } // since there is no default case above, this is unreachable return false; } // Retrieves the NED delta velocity corrected void AP_AHRS_NavEKF::getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const { int8_t imu_idx = -1; Vector3f accel_bias; switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: imu_idx = EKF2.getPrimaryCoreIMUIndex(); EKF2.getAccelZBias(-1,accel_bias.z); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: imu_idx = EKF3.getPrimaryCoreIMUIndex(); EKF3.getAccelBias(-1,accel_bias); break; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: break; #endif } if (imu_idx == -1) { AP_AHRS::getCorrectedDeltaVelocityNED(ret, dt); return; } ret.zero(); const AP_InertialSensor &_ins = AP::ins(); _ins.get_delta_velocity((uint8_t)imu_idx, ret); dt = _ins.get_delta_velocity_dt((uint8_t)imu_idx); ret -= accel_bias*dt; ret = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * ret; ret.z += GRAVITY_MSS*dt; } // report any reason for why the backend is refusing to initialise const char *AP_AHRS_NavEKF::prearm_failure_reason(void) const { switch (ekf_type()) { case EKFType::NONE: return nullptr; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.prearm_failure_reason(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.prearm_failure_reason(); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return nullptr; #endif } return nullptr; } // check all cores providing consistent attitudes for prearm checks bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failure_msg_len) const { // get primary attitude source's attitude as quaternion Quaternion primary_quat; get_quat_body_to_ned(primary_quat); // only check yaw if compasses are being used bool check_yaw = _compass && _compass->use_for_yaw(); uint8_t total_ekf_cores = 0; #if HAL_NAVEKF2_AVAILABLE // check primary vs ekf2 for (uint8_t i = 0; i < EKF2.activeCores(); i++) { Quaternion ekf2_quat; Vector3f angle_diff; EKF2.getQuaternionBodyToNED(i, ekf2_quat); primary_quat.angular_difference(ekf2_quat).to_axis_angle(angle_diff); float diff = safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)); if (diff > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Roll/Pitch inconsistent by %d deg", (int)degrees(diff)); return false; } diff = fabsf(angle_diff.z); if (check_yaw && (diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Yaw inconsistent by %d deg", (int)degrees(diff)); return false; } } total_ekf_cores = EKF2.activeCores(); #endif #if HAL_NAVEKF3_AVAILABLE // check primary vs ekf3 for (uint8_t i = 0; i < EKF3.activeCores(); i++) { Quaternion ekf3_quat; Vector3f angle_diff; EKF3.getQuaternionBodyToNED(i, ekf3_quat); primary_quat.angular_difference(ekf3_quat).to_axis_angle(angle_diff); float diff = safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)); if (diff > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Roll/Pitch inconsistent by %d deg", (int)degrees(diff)); return false; } diff = fabsf(angle_diff.z); if (check_yaw && (diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Yaw inconsistent by %d deg", (int)degrees(diff)); return false; } } total_ekf_cores += EKF3.activeCores(); #endif // check primary vs dcm if (!always_use_EKF() || (total_ekf_cores == 1)) { Quaternion dcm_quat; Vector3f angle_diff; dcm_quat.from_rotation_matrix(get_DCM_rotation_body_to_ned()); primary_quat.angular_difference(dcm_quat).to_axis_angle(angle_diff); float diff = safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)); if (diff > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { hal.util->snprintf(failure_msg, failure_msg_len, "DCM Roll/Pitch inconsistent by %d deg", (int)degrees(diff)); return false; } // Check vs DCM yaw if this vehicle could use DCM in flight // and if not using an external yaw source (DCM does not support external yaw sources) bool using_external_yaw = false; #if HAL_NAVEKF3_AVAILABLE using_external_yaw = ekf_type() == EKFType::THREE && EKF3.using_external_yaw(); #endif if (!always_use_EKF() && !using_external_yaw) { diff = fabsf(angle_diff.z); if (check_yaw && (diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { hal.util->snprintf(failure_msg, failure_msg_len, "DCM Yaw inconsistent by %d deg", (int)degrees(diff)); return false; } } } return true; } // return the amount of yaw angle change due to the last yaw angle reset in radians // returns the time of the last yaw angle reset or 0 if no reset has ever occurred uint32_t AP_AHRS_NavEKF::getLastYawResetAngle(float &yawAng) { switch (ekf_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastYawResetAngle(yawAng); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastYawResetAngle(yawAng); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return 0; #endif } return 0; } // return the amount of NE position change in metres due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred uint32_t AP_AHRS_NavEKF::getLastPosNorthEastReset(Vector2f &pos) { switch (ekf_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastPosNorthEastReset(pos); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastPosNorthEastReset(pos); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return 0; #endif } return 0; } // return the amount of NE velocity change in metres/sec due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred uint32_t AP_AHRS_NavEKF::getLastVelNorthEastReset(Vector2f &vel) const { switch (ekf_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastVelNorthEastReset(vel); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastVelNorthEastReset(vel); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return 0; #endif } return 0; } // return the amount of vertical position change due to the last reset in meters // returns the time of the last reset or 0 if no reset has ever occurred uint32_t AP_AHRS_NavEKF::getLastPosDownReset(float &posDelta) { switch (ekf_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastPosDownReset(posDelta); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastPosDownReset(posDelta); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return 0; #endif } return 0; } // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKf origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false bool AP_AHRS_NavEKF::resetHeightDatum(void) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); switch (ekf_type()) { case EKFType::NONE: #if HAL_NAVEKF3_AVAILABLE EKF3.resetHeightDatum(); #endif #if HAL_NAVEKF2_AVAILABLE EKF2.resetHeightDatum(); #endif return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #if HAL_NAVEKF3_AVAILABLE EKF3.resetHeightDatum(); #endif return EKF2.resetHeightDatum(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #if HAL_NAVEKF2_AVAILABLE EKF2.resetHeightDatum(); #endif return EKF3.resetHeightDatum(); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return false; #endif } return false; } // send a EKF_STATUS_REPORT for current EKF void AP_AHRS_NavEKF::send_ekf_status_report(mavlink_channel_t chan) const { switch (ekf_type()) { case EKFType::NONE: // send zero status report mavlink_msg_ekf_status_report_send(chan, 0, 0, 0, 0, 0, 0, 0); break; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: { // send status report with everything looking good const uint16_t flags = EKF_ATTITUDE | /* Set if EKF's attitude estimate is good. | */ EKF_VELOCITY_HORIZ | /* Set if EKF's horizontal velocity estimate is good. | */ EKF_VELOCITY_VERT | /* Set if EKF's vertical velocity estimate is good. | */ EKF_POS_HORIZ_REL | /* Set if EKF's horizontal position (relative) estimate is good. | */ EKF_POS_HORIZ_ABS | /* Set if EKF's horizontal position (absolute) estimate is good. | */ EKF_POS_VERT_ABS | /* Set if EKF's vertical position (absolute) estimate is good. | */ EKF_POS_VERT_AGL | /* Set if EKF's vertical position (above ground) estimate is good. | */ //EKF_CONST_POS_MODE | /* EKF is in constant position mode and does not know it's absolute or relative position. | */ EKF_PRED_POS_HORIZ_REL | /* Set if EKF's predicted horizontal position (relative) estimate is good. | */ EKF_PRED_POS_HORIZ_ABS; /* Set if EKF's predicted horizontal position (absolute) estimate is good. | */ mavlink_msg_ekf_status_report_send(chan, flags, 0, 0, 0, 0, 0, 0); } break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.send_status_report(chan); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.send_status_report(chan); #endif } } // passes a reference to the location of the inertial navigation origin // in WGS-84 coordinates // returns a boolean true when the inertial navigation origin has been set bool AP_AHRS_NavEKF::get_origin(Location &ret) const { switch (ekf_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (!EKF2.getOriginLLH(-1,ret)) { return false; } return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (!EKF3.getOriginLLH(-1,ret)) { return false; } return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; ret = fdm.home; return true; #endif } return false; } // get_hgt_ctrl_limit - get maximum height to be observed by the control loops in metres and a validity flag // this is used to limit height during optical flow navigation // it will return false when no limiting is required bool AP_AHRS_NavEKF::get_hgt_ctrl_limit(float& limit) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no limiting applies return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getHeightControlLimit(limit); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getHeightControlLimit(limit); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return false; #endif } return false; } // Set to true if the terrain underneath is stable enough to be used as a height reference // this is not related to terrain following void AP_AHRS_NavEKF::set_terrain_hgt_stable(bool stable) { #if HAL_NAVEKF2_AVAILABLE EKF2.setTerrainHgtStable(stable); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.setTerrainHgtStable(stable); #endif } // get_location - updates the provided location with the latest calculated location // returns true on success (i.e. the EKF knows it's latest position), false on failure bool AP_AHRS_NavEKF::get_location(struct Location &loc) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no data return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLLH(loc); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLLH(loc); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return get_position(loc); #endif } return false; } // return the innovations for the primariy EKF // boolean false is returned if innovations are not available bool AP_AHRS_NavEKF::get_innovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no data return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // use EKF to get innovations EKF2.getInnovations(-1, velInnov, posInnov, magInnov, tasInnov, yawInnov); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // use EKF to get innovations EKF3.getInnovations(-1, velInnov, posInnov, magInnov, tasInnov, yawInnov); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: velInnov.zero(); posInnov.zero(); magInnov.zero(); tasInnov = 0.0f; yawInnov = 0.0f; return true; #endif } return false; } // get_variances - provides the innovations normalised using the innovation variance where a value of 0 // indicates prefect consistency between the measurement and the EKF solution and a value of of 1 is the maximum // inconsistency that will be accpeted by the filter // boolean false is returned if variances are not available bool AP_AHRS_NavEKF::get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no data return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // use EKF to get variance EKF2.getVariances(-1,velVar, posVar, hgtVar, magVar, tasVar, offset); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // use EKF to get variance EKF3.getVariances(-1,velVar, posVar, hgtVar, magVar, tasVar, offset); return true; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: velVar = 0; posVar = 0; hgtVar = 0; magVar.zero(); tasVar = 0; offset.zero(); return true; #endif } return false; } void AP_AHRS_NavEKF::setTakeoffExpected(bool val) { #if HAL_NAVEKF2_AVAILABLE EKF2.setTakeoffExpected(val); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.setTakeoffExpected(val); #endif } void AP_AHRS_NavEKF::setTouchdownExpected(bool val) { #if HAL_NAVEKF2_AVAILABLE EKF2.setTouchdownExpected(val); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.setTouchdownExpected(val); #endif } bool AP_AHRS_NavEKF::getGpsGlitchStatus() const { nav_filter_status ekf_status {}; if (!get_filter_status(ekf_status)) { return false; } return ekf_status.flags.gps_glitching; } // is the EKF backend doing its own sensor logging? bool AP_AHRS_NavEKF::have_ekf_logging(void) const { switch (ekf_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.have_ekf_logging(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.have_ekf_logging(); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: return false; #endif } // since there is no default case above, this is unreachable return false; } // get the index of the current primary IMU uint8_t AP_AHRS_NavEKF::get_primary_IMU_index() const { int8_t imu = -1; switch (ekf_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // let EKF2 choose primary IMU imu = EKF2.getPrimaryCoreIMUIndex(); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // let EKF2 choose primary IMU imu = EKF3.getPrimaryCoreIMUIndex(); break; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: break; #endif } if (imu == -1) { imu = AP::ins().get_primary_accel(); } return imu; } // get earth-frame accel vector for primary IMU const Vector3f &AP_AHRS_NavEKF::get_accel_ef() const { return get_accel_ef(get_primary_accel_index()); } // return the index of the primary core or -1 if no primary core selected int8_t AP_AHRS_NavEKF::get_primary_core_index() const { switch (active_EKF_type()) { case EKFType::NONE: #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: #endif // SITL and DCM have only one core return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getPrimaryCoreIndex(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getPrimaryCoreIndex(); #endif } // we should never get here INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); return -1; } // get the index of the current primary accelerometer sensor uint8_t AP_AHRS_NavEKF::get_primary_accel_index(void) const { if (ekf_type() != EKFType::NONE) { return get_primary_IMU_index(); } return AP::ins().get_primary_accel(); } // get the index of the current primary gyro sensor uint8_t AP_AHRS_NavEKF::get_primary_gyro_index(void) const { if (ekf_type() != EKFType::NONE) { return get_primary_IMU_index(); } return AP::ins().get_primary_gyro(); } // see if EKF lane switching is possible to avoid EKF failsafe void AP_AHRS_NavEKF::check_lane_switch(void) { switch (active_EKF_type()) { case EKFType::NONE: break; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.checkLaneSwitch(); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.checkLaneSwitch(); break; #endif } } // request EKF yaw reset to try and avoid the need for an EKF lane switch or failsafe void AP_AHRS_NavEKF::request_yaw_reset(void) { switch (active_EKF_type()) { case EKFType::NONE: break; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.requestYawReset(); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.requestYawReset(); break; #endif } } void AP_AHRS_NavEKF::Log_Write() { #if HAL_NAVEKF2_AVAILABLE get_NavEKF2().Log_Write(); #endif #if HAL_NAVEKF3_AVAILABLE get_NavEKF3().Log_Write(); #endif } AP_AHRS_NavEKF &AP::ahrs_navekf() { return static_cast(*AP_AHRS::get_singleton()); } // check whether compass can be bypassed for arming check in case when external navigation data is available bool AP_AHRS_NavEKF::is_ext_nav_used_for_yaw(void) const { switch (active_EKF_type()) { #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.isExtNavUsedForYaw(); #endif case EKFType::NONE: #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.using_external_yaw(); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case EKFType::SITL: #endif return false; } // since there is no default case above, this is unreachable return false; } // set and save the alt noise parameter value void AP_AHRS_NavEKF::set_alt_measurement_noise(float noise) { #if HAL_NAVEKF2_AVAILABLE EKF2.set_baro_alt_noise(noise); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.set_baro_alt_noise(noise); #endif } #endif // AP_AHRS_NAVEKF_AVAILABLE