/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsMulticopter.cpp - ArduCopter multicopter motors library * Code by Randy Mackay and Robert Lefebvre. DIYDrones.com * */ #include "AP_MotorsMulticopter.h" #include extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_MotorsMulticopter::var_info[] = { // 0 was used by TB_RATIO // 1,2,3 were used by throttle curve // 5 was SPIN_ARMED // @Param: YAW_HEADROOM // @DisplayName: Matrix Yaw Min // @Description: Yaw control is given at least this pwm range // @Range: 0 500 // @Units: pwm // @User: Advanced AP_GROUPINFO("YAW_HEADROOM", 6, AP_MotorsMulticopter, _yaw_headroom, AP_MOTORS_YAW_HEADROOM_DEFAULT), // 7 was THR_LOW_CMP // @Param: THST_EXPO // @DisplayName: Thrust Curve Expo // @Description: Motor thrust curve exponent (from 0 for linear to 1.0 for second order curve) // @Range: 0.25 0.8 // @User: Advanced AP_GROUPINFO("THST_EXPO", 8, AP_MotorsMulticopter, _thrust_curve_expo, AP_MOTORS_THST_EXPO_DEFAULT), // @Param: SPIN_MAX // @DisplayName: Motor Spin maximum // @Description: Point at which the thrust saturates expressed as a number from 0 to 1 in the entire output range // @Values: 0.9:Low, 0.95:Default, 1.0:High // @User: Advanced AP_GROUPINFO("SPIN_MAX", 9, AP_MotorsMulticopter, _spin_max, AP_MOTORS_SPIN_MAX_DEFAULT), // @Param: BAT_VOLT_MAX // @DisplayName: Battery voltage compensation maximum voltage // @Description: Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.4 * cell count, 0 = Disabled // @Range: 6 35 // @Units: Volts // @User: Advanced AP_GROUPINFO("BAT_VOLT_MAX", 10, AP_MotorsMulticopter, _batt_voltage_max, AP_MOTORS_BAT_VOLT_MAX_DEFAULT), // @Param: BAT_VOLT_MIN // @DisplayName: Battery voltage compensation minimum voltage // @Description: Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.5 * cell count, 0 = Disabled // @Range: 6 35 // @Units: Volts // @User: Advanced AP_GROUPINFO("BAT_VOLT_MIN", 11, AP_MotorsMulticopter, _batt_voltage_min, AP_MOTORS_BAT_VOLT_MIN_DEFAULT), // @Param: BAT_CURR_MAX // @DisplayName: Motor Current Max // @Description: Maximum current over which maximum throttle is limited (0 = Disabled) // @Range: 0 200 // @Units: Amps // @User: Advanced AP_GROUPINFO("BAT_CURR_MAX", 12, AP_MotorsMulticopter, _batt_current_max, AP_MOTORS_BAT_CURR_MAX_DEFAULT), // 13, 14 were used by THR_MIX_MIN, THR_MIX_MAX // @Param: PWM_TYPE // @DisplayName: Output PWM type // @Description: This selects the output PWM type, allowing for normal PWM continuous output, OneShot or brushed motor output // @Values: 0:Normal,1:OneShot,2:OneShot125,3:Brushed16kHz // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_TYPE", 15, AP_MotorsMulticopter, _pwm_type, PWM_TYPE_NORMAL), // @Param: PWM_MIN // @DisplayName: PWM output miniumum // @Description: This sets the min PWM output value that will ever be output to the motors, 0 = use input RC3_MIN // @Range: 0 2000 // @User: Advanced AP_GROUPINFO("PWM_MIN", 16, AP_MotorsMulticopter, _pwm_min, 0), // @Param: PWM_MAX // @DisplayName: PWM output maximum // @Description: This sets the max PWM value that will ever be output to the motors, 0 = use input RC3_MAX // @Range: 0 2000 // @User: Advanced AP_GROUPINFO("PWM_MAX", 17, AP_MotorsMulticopter, _pwm_max, 0), // @Param: SPIN_MIN // @DisplayName: Motor Spin minimum // @Description: Point at which the thrust starts expressed as a number from 0 to 1 in the entire output range. Should be higher than MOT_SPIN_ARM. // @Values: 0.0:Low, 0.15:Default, 0.3:High // @User: Advanced AP_GROUPINFO("SPIN_MIN", 18, AP_MotorsMulticopter, _spin_min, AP_MOTORS_SPIN_MIN_DEFAULT), // @Param: SPIN_ARM // @DisplayName: Motor Spin armed // @Description: Point at which the motors start to spin expressed as a number from 0 to 1 in the entire output range. Should be lower than MOT_SPIN_MIN. // @Values: 0.0:Low, 0.1:Default, 0.2:High // @User: Advanced AP_GROUPINFO("SPIN_ARM", 19, AP_MotorsMulticopter, _spin_arm, AP_MOTORS_SPIN_ARM_DEFAULT), // @Param: BAT_CURR_TC // @DisplayName: Motor Current Max Time Constant // @Description: Time constant used to limit the maximum current // @Range: 0 10 // @Units: Seconds // @User: Advanced AP_GROUPINFO("BAT_CURR_TC", 20, AP_MotorsMulticopter, _batt_current_time_constant, AP_MOTORS_BAT_CURR_TC_DEFAULT), // @Param: THST_HOVER // @DisplayName: Thrust Hover Value // @Description: Motor thrust needed to hover expressed as a number from 0 to 1 // @Range: 0.2 0.8 // @User: Advanced AP_GROUPINFO("THST_HOVER", 21, AP_MotorsMulticopter, _throttle_hover, AP_MOTORS_THST_HOVER_DEFAULT), // @Param: HOVER_LEARN // @DisplayName: Hover Value Learning // @Description: Enable/Disable automatic learning of hover throttle // @Values: 0:Disabled, 1:Learn, 2:LearnAndSave // @User: Advanced AP_GROUPINFO("HOVER_LEARN", 22, AP_MotorsMulticopter, _throttle_hover_learn, HOVER_LEARN_AND_SAVE), // @Param: SAFE_DISARM // @DisplayName: Motor PWM output disabled when disarmed // @Description: Disables motor PWM output when disarmed // @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed // @User: Advanced AP_GROUPINFO("SAFE_DISARM", 23, AP_MotorsMulticopter, _disarm_disable_pwm, 0), // @Param: YAW_SV_ANGLE // @DisplayName: Yaw Servo Max Lean Angle // @Description: Yaw servo's maximum lean angle // @Range: 5 80 // @Units: Degrees // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("YAW_SV_ANGLE", 35, AP_MotorsMulticopter, _yaw_servo_angle_max_deg, 30, AP_PARAM_FRAME_TRICOPTER), // @Param: SPOOL_TIME // @DisplayName: Spool up time // @Description: Time in seconds to spool up the motors from zero to min throttle. // @Range: 0 2 // @Units: Seconds // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("SPOOL_TIME", 36, AP_MotorsMulticopter, _spool_up_time, AP_MOTORS_SPOOL_UP_TIME_DEFAULT), AP_GROUPEND }; // Constructor AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t loop_rate, uint16_t speed_hz) : AP_Motors(loop_rate, speed_hz), _spool_mode(SHUT_DOWN), _spin_up_ratio(0.0f), _batt_voltage_resting(0.0f), _batt_current_resting(0.0f), _batt_resistance(0.0f), _batt_timer(0), _lift_max(1.0f), _throttle_limit(1.0f), _throttle_thrust_max(0.0f), _disarm_safety_timer(0) { AP_Param::setup_object_defaults(this, var_info); // disable all motors by default memset(motor_enabled, false, sizeof(motor_enabled)); // setup battery voltage filtering _batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ); _batt_voltage_filt.reset(1.0f); // default throttle ranges (i.e. _throttle_radio_min, _throttle_radio_max) set_throttle_range(1100, 1900); }; // output - sends commands to the motors void AP_MotorsMulticopter::output() { // update throttle filter update_throttle_filter(); // update battery resistance update_battery_resistance(); // calc filtered battery voltage and lift_max update_lift_max_from_batt_voltage(); // run spool logic output_logic(); // calculate thrust output_armed_stabilizing(); // apply any thrust compensation for the frame thrust_compensation(); // convert rpy_thrust values to pwm output_to_motors(); }; // sends minimum values out to the motors void AP_MotorsMulticopter::output_min() { set_desired_spool_state(DESIRED_SHUT_DOWN); _spool_mode = SHUT_DOWN; output(); } // update the throttle input filter void AP_MotorsMulticopter::update_throttle_filter() { if (armed()) { _throttle_filter.apply(_throttle_in, 1.0f/_loop_rate); // constrain filtered throttle if (_throttle_filter.get() < 0.0f) { _throttle_filter.reset(0.0f); } if (_throttle_filter.get() > 1.0f) { _throttle_filter.reset(1.0f); } } else { _throttle_filter.reset(0.0f); } } // return current_limit as a number from 0 ~ 1 in the range throttle_min to throttle_max float AP_MotorsMulticopter::get_current_limit_max_throttle() { // return maximum if current limiting is disabled if (_batt_current_max <= 0) { _throttle_limit = 1.0f; return 1.0f; } // remove throttle limit if disarmed if (!_flags.armed) { _throttle_limit = 1.0f; return 1.0f; } // calculate the maximum current to prevent voltage sag below _batt_voltage_min float batt_current_max = MIN(_batt_current_max, _batt_current + (_batt_voltage-_batt_voltage_min)/_batt_resistance); float batt_current_ratio = _batt_current/batt_current_max; float loop_interval = 1.0f/_loop_rate; _throttle_limit += (loop_interval/(loop_interval+_batt_current_time_constant))*(1.0f - batt_current_ratio); // throttle limit drops to 20% between hover and full throttle _throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f); // limit max throttle return get_throttle_hover() + ((1.0-get_throttle_hover())*_throttle_limit); } // apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1 float AP_MotorsMulticopter::apply_thrust_curve_and_volt_scaling(float thrust) const { float throttle_ratio = thrust; // apply thrust curve - domain 0.0 to 1.0, range 0.0 to 1.0 if (_thrust_curve_expo > 0.0f){ if(!is_zero(_batt_voltage_filt.get())) { throttle_ratio = ((_thrust_curve_expo-1.0f) + safe_sqrt((1.0f-_thrust_curve_expo)*(1.0f-_thrust_curve_expo) + 4.0f*_thrust_curve_expo*_lift_max*thrust))/(2.0f*_thrust_curve_expo*_batt_voltage_filt.get()); } else { throttle_ratio = ((_thrust_curve_expo-1.0f) + safe_sqrt((1.0f-_thrust_curve_expo)*(1.0f-_thrust_curve_expo) + 4.0f*_thrust_curve_expo*_lift_max*thrust))/(2.0f*_thrust_curve_expo); } } return constrain_float(throttle_ratio, 0.0f, 1.0f); } // update_lift_max from battery voltage - used for voltage compensation void AP_MotorsMulticopter::update_lift_max_from_batt_voltage() { // sanity check battery_voltage_min is not too small // if disabled or misconfigured exit immediately if((_batt_voltage_max <= 0) || (_batt_voltage_min >= _batt_voltage_max) || (_batt_voltage < 0.25f*_batt_voltage_min)) { _batt_voltage_filt.reset(1.0f); _lift_max = 1.0f; return; } _batt_voltage_min = MAX(_batt_voltage_min, _batt_voltage_max * 0.6f); // add current based voltage sag to battery voltage float batt_voltage = _batt_voltage + (_batt_current-_batt_current_resting) * _batt_resistance; batt_voltage = constrain_float(batt_voltage, _batt_voltage_min, _batt_voltage_max); // filter at 0.5 Hz float batt_voltage_filt = _batt_voltage_filt.apply(batt_voltage/_batt_voltage_max, 1.0f/_loop_rate); // calculate lift max _lift_max = batt_voltage_filt*(1-_thrust_curve_expo) + _thrust_curve_expo*batt_voltage_filt*batt_voltage_filt; } // update_battery_resistance - calculate battery resistance when throttle is above hover_out void AP_MotorsMulticopter::update_battery_resistance() { // if disarmed reset resting voltage and current if (!_flags.armed) { _batt_voltage_resting = _batt_voltage; _batt_current_resting = _batt_current; _batt_timer = 0; } else if (_batt_voltage_resting > _batt_voltage && _batt_current_resting < _batt_current) { // update battery resistance when throttle is over hover throttle float batt_resistance = (_batt_voltage_resting-_batt_voltage)/(_batt_current-_batt_current_resting); if ((_batt_timer < 400) && ((_batt_current_resting*2.0f) < _batt_current)) { if (get_throttle() >= get_throttle_hover()) { // filter reaches 90% in 1/4 the test time _batt_resistance += 0.05f*(batt_resistance - _batt_resistance); _batt_timer += 1; } else { // initialize battery resistance to prevent change in resting voltage estimate _batt_resistance = batt_resistance; } } // make sure battery resistance value doesn't result in the predicted battery voltage exceeding the resting voltage if(batt_resistance < _batt_resistance){ _batt_resistance = batt_resistance; } } } float AP_MotorsMulticopter::get_compensation_gain() const { // avoid divide by zero if (_lift_max <= 0.0f) { return 1.0f; } float ret = 1.0f / _lift_max; #if AP_MOTORS_DENSITY_COMP == 1 // air density ratio is increasing in density / decreasing in altitude if (_air_density_ratio > 0.3f && _air_density_ratio < 1.5f) { ret *= 1.0f / constrain_float(_air_density_ratio,0.5f,1.25f); } #endif return ret; } int16_t AP_MotorsMulticopter::calc_thrust_to_pwm(float thrust_in) const { thrust_in = constrain_float(thrust_in, 0.0f, 1.0f); return get_pwm_output_min() + (get_pwm_output_max()-get_pwm_output_min()) * (_spin_min + (_spin_max-_spin_min)*apply_thrust_curve_and_volt_scaling(thrust_in)); } int16_t AP_MotorsMulticopter::calc_spin_up_to_pwm() const { return get_pwm_output_min() + constrain_float(_spin_up_ratio, 0.0f, 1.0f) * _spin_min * (get_pwm_output_max()-get_pwm_output_min()); } // get minimum or maximum pwm value that can be output to motors int16_t AP_MotorsMulticopter::get_pwm_output_min() const { // return _pwm_min if both PWM_MIN and PWM_MAX parameters are defined and valid if ((_pwm_min > 0) && (_pwm_max > 0) && (_pwm_max > _pwm_min)) { return _pwm_min; } return _throttle_radio_min; } // get maximum pwm value that can be output to motors int16_t AP_MotorsMulticopter::get_pwm_output_max() const { // return _pwm_max if both PWM_MIN and PWM_MAX parameters are defined and valid if ((_pwm_min > 0) && (_pwm_max > 0) && (_pwm_max > _pwm_min)) { return _pwm_max; } return _throttle_radio_max; } // set_throttle_range - sets the minimum throttle that will be sent to the engines when they're not off (i.e. to prevents issues with some motors spinning and some not at very low throttle) // also sets throttle channel minimum and maximum pwm void AP_MotorsMulticopter::set_throttle_range(int16_t radio_min, int16_t radio_max) { // sanity check if (radio_max <= radio_min) { return; } _throttle_radio_min = radio_min; _throttle_radio_max = radio_max; hal.rcout->set_esc_scaling(get_pwm_output_min(), get_pwm_output_max()); } // update the throttle input filter. should be called at 100hz void AP_MotorsMulticopter::update_throttle_hover(float dt) { if (_throttle_hover_learn != HOVER_LEARN_DISABLED) { // we have chosen to constrain the hover throttle to be within the range reachable by the third order expo polynomial. _throttle_hover = constrain_float(_throttle_hover + (dt/(dt+AP_MOTORS_THST_HOVER_TC))*(get_throttle()-_throttle_hover), AP_MOTORS_THST_HOVER_MIN, AP_MOTORS_THST_HOVER_MAX); } } // run spool logic void AP_MotorsMulticopter::output_logic() { if (_flags.armed) { _disarm_safety_timer = 100; } else if (_disarm_safety_timer != 0) { _disarm_safety_timer--; } // force desired and current spool mode if disarmed or not interlocked if (!_flags.armed || !_flags.interlock) { _spool_desired = DESIRED_SHUT_DOWN; _spool_mode = SHUT_DOWN; } if (_spool_up_time < 0.05) { // prevent float exception _spool_up_time.set(0.05); } switch (_spool_mode) { case SHUT_DOWN: // Motors should be stationary. // Servos set to their trim values or in a test condition. // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; // make sure the motors are spooling in the correct direction if (_spool_desired != DESIRED_SHUT_DOWN) { _spool_mode = SPIN_WHEN_ARMED; break; } // set and increment ramp variables _spin_up_ratio = 0.0f; _throttle_thrust_max = 0.0f; break; case SPIN_WHEN_ARMED: { // Motors should be stationary or at spin when armed. // Servos should be moving to correct the current attitude. // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; // set and increment ramp variables float spool_step = 1.0f/(_spool_up_time*_loop_rate); if (_spool_desired == DESIRED_SHUT_DOWN){ _spin_up_ratio -= spool_step; // constrain ramp value and update mode if (_spin_up_ratio <= 0.0f) { _spin_up_ratio = 0.0f; _spool_mode = SHUT_DOWN; } } else if(_spool_desired == DESIRED_THROTTLE_UNLIMITED) { _spin_up_ratio += spool_step; // constrain ramp value and update mode if (_spin_up_ratio >= 1.0f) { _spin_up_ratio = 1.0f; _spool_mode = SPOOL_UP; } } else { // _spool_desired == SPIN_WHEN_ARMED float spin_up_armed_ratio = 0.0f; if (_spin_min > 0.0f) { spin_up_armed_ratio = _spin_arm / _spin_min; } _spin_up_ratio += constrain_float(spin_up_armed_ratio-_spin_up_ratio, -spool_step, spool_step); } _throttle_thrust_max = 0.0f; break; } case SPOOL_UP: // Maximum throttle should move from minimum to maximum. // Servos should exhibit normal flight behavior. // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if (_spool_desired != DESIRED_THROTTLE_UNLIMITED ){ _spool_mode = SPOOL_DOWN; break; } // set and increment ramp variables _spin_up_ratio = 1.0f; _throttle_thrust_max += 1.0f/(_spool_up_time*_loop_rate); // constrain ramp value and update mode if (_throttle_thrust_max >= MIN(get_throttle(), get_current_limit_max_throttle())) { _throttle_thrust_max = get_current_limit_max_throttle(); _spool_mode = THROTTLE_UNLIMITED; } else if (_throttle_thrust_max < 0.0f) { _throttle_thrust_max = 0.0f; } break; case THROTTLE_UNLIMITED: // Throttle should exhibit normal flight behavior. // Servos should exhibit normal flight behavior. // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if (_spool_desired != DESIRED_THROTTLE_UNLIMITED) { _spool_mode = SPOOL_DOWN; break; } // set and increment ramp variables _spin_up_ratio = 1.0f; _throttle_thrust_max = get_current_limit_max_throttle(); break; case SPOOL_DOWN: // Maximum throttle should move from maximum to minimum. // Servos should exhibit normal flight behavior. // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if (_spool_desired == DESIRED_THROTTLE_UNLIMITED) { _spool_mode = SPOOL_UP; break; } // set and increment ramp variables _spin_up_ratio = 1.0f; _throttle_thrust_max -= 1.0f/(_spool_up_time*_loop_rate); // constrain ramp value and update mode if (_throttle_thrust_max <= 0.0f){ _throttle_thrust_max = 0.0f; } if (_throttle_thrust_max >= get_current_limit_max_throttle()) { _throttle_thrust_max = get_current_limit_max_throttle(); } else if (is_zero(_throttle_thrust_max)) { _spool_mode = SPIN_WHEN_ARMED; } break; } } // passes throttle directly to all motors for ESC calibration. // throttle_input is in the range of 0 ~ 1 where 0 will send get_pwm_output_min() and 1 will send get_pwm_output_max() void AP_MotorsMulticopter::set_throttle_passthrough_for_esc_calibration(float throttle_input) { if (armed()) { uint16_t pwm_out = get_pwm_output_min() + constrain_float(throttle_input, 0.0f, 1.0f) * (get_pwm_output_max() - get_pwm_output_min()); // send the pilot's input directly to each enabled motor hal.rcout->cork(); for (uint16_t i=0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { rc_write(i, pwm_out); } } hal.rcout->push(); } } // output a thrust to all motors that match a given motor mask. This // is used to control tiltrotor motors in forward flight. Thrust is in // the range 0 to 1 void AP_MotorsMulticopter::output_motor_mask(float thrust, uint8_t mask) { hal.rcout->cork(); for (uint8_t i=0; ipush(); } // save parameters as part of disarming void AP_MotorsMulticopter::save_params_on_disarm() { // save hover throttle if (_throttle_hover_learn == HOVER_LEARN_AND_SAVE) { _throttle_hover.save(); } }