// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // /// @file AP_Param.h /// @brief A system for managing and storing variables that are of /// general interest to the system. #pragma once #include #include #include #include #include #include #include "float.h" #define AP_MAX_NAME_SIZE 16 /* flags for variables in var_info and group tables */ // a nested offset is for subgroups that are not subclasses #define AP_PARAM_FLAG_NESTED_OFFSET 1 // a pointer variable is for dynamically allocated objects #define AP_PARAM_FLAG_POINTER 2 // an enable variable allows a whole subtree of variables to be made // invisible #define AP_PARAM_FLAG_ENABLE 4 // don't shift index 0 to index 63. Use this when you know there will be // no conflict with the parent #define AP_PARAM_NO_SHIFT 8 // a variant of offsetof() to work around C++ restrictions. // this can only be used when the offset of a variable in a object // is constant and known at compile time #define AP_VAROFFSET(type, element) (((ptrdiff_t)(&((const type *)1)->element))-1) // find the type of a variable given the class and element #define AP_CLASSTYPE(class, element) ((uint8_t)(((const class *) 1)->element.vtype)) // declare a group var_info line #define AP_GROUPINFO_FLAGS(name, idx, class, element, def, flags) { AP_CLASSTYPE(class, element), idx, name, AP_VAROFFSET(class, element), {def_value : def}, flags } // declare a group var_info line #define AP_GROUPINFO(name, idx, class, element, def) AP_GROUPINFO_FLAGS(name, idx, class, element, def, 0) // declare a nested group entry in a group var_info #define AP_NESTEDGROUPINFO(class, idx) { AP_PARAM_GROUP, idx, "", 0, { group_info : class::var_info }, 0 } // declare a subgroup entry in a group var_info. This is for having another arbitrary object as a member of the parameter list of // an object #define AP_SUBGROUPINFO(element, name, idx, thisclass, elclass) { AP_PARAM_GROUP, idx, name, AP_VAROFFSET(thisclass, element), { group_info : elclass::var_info }, AP_PARAM_FLAG_NESTED_OFFSET } // declare a pointer subgroup entry in a group var_info #define AP_SUBGROUPPTR(element, name, idx, thisclass, elclass) { AP_PARAM_GROUP, idx, name, AP_VAROFFSET(thisclass, element), { group_info : elclass::var_info }, AP_PARAM_FLAG_POINTER } #define AP_GROUPEND { AP_PARAM_NONE, 0xFF, "", 0, { group_info : NULL } } #define AP_VAREND { AP_PARAM_NONE, "", 0, NULL, { group_info : NULL } } enum ap_var_type { AP_PARAM_NONE = 0, AP_PARAM_INT8, AP_PARAM_INT16, AP_PARAM_INT32, AP_PARAM_FLOAT, AP_PARAM_VECTOR3F, AP_PARAM_GROUP }; /// Base class for variables. /// /// Provides naming and lookup services for variables. /// class AP_Param { public: // the Info and GroupInfo structures are passed by the main // program in setup() to give information on how variables are // named and their location in memory struct GroupInfo { uint8_t type; // AP_PARAM_* uint8_t idx; // identifier within the group const char *name; ptrdiff_t offset; // offset within the object union { const struct GroupInfo *group_info; const float def_value; }; uint8_t flags; }; struct Info { uint8_t type; // AP_PARAM_* const char *name; uint16_t key; // k_param_* const void *ptr; // pointer to the variable in memory union { const struct GroupInfo *group_info; const float def_value; }; uint8_t flags; }; struct ConversionInfo { uint16_t old_key; // k_param_* uint8_t old_group_element; // index in old object enum ap_var_type type; // AP_PARAM_* const char *new_name; }; // called once at startup to setup the _var_info[] table. This // will also check the EEPROM header and re-initialise it if the // wrong version is found static bool setup(); // constructor with var_info AP_Param(const struct Info *info) { _var_info = info; uint16_t i; for (i=0; info[i].type != AP_PARAM_NONE; i++) ; _num_vars = i; } // empty constructor AP_Param() {} // a token used for first()/next() state typedef struct { uint32_t key : 9; uint32_t idx : 5; // offset into array types uint32_t group_element : 18; } ParamToken; // nesting structure for recursive call states struct GroupNesting { static const uint8_t numlevels = 2; uint8_t level; const struct GroupInfo *group_ret[numlevels]; }; // return true if AP_Param has been initialised via setup() static bool initialised(void); // the 'group_id' of a element of a group is the 18 bit identifier // used to distinguish between this element of the group and other // elements of the same group. It is calculated using a bit shift per // level of nesting, so the first level of nesting gets 6 bits the 2nd // level gets the next 6 bits, and the 3rd level gets the last 6 // bits. This limits groups to having at most 64 elements. static uint32_t group_id(const struct GroupInfo *grpinfo, uint8_t base, uint8_t i, uint8_t shift); /// Copy the variable's name, prefixed by any containing group name, to a /// buffer. /// /// If the variable has no name, the buffer will contain an empty string. /// /// Note that if the combination of names is larger than the buffer, the /// result in the buffer will be truncated. /// /// @param token token giving current variable /// @param buffer The destination buffer /// @param bufferSize Total size of the destination buffer. /// void copy_name_info(const struct AP_Param::Info *info, const struct GroupInfo *ginfo, const struct GroupNesting &group_nesting, uint8_t idx, char *buffer, size_t bufferSize, bool force_scalar=false) const; /// Copy the variable's name, prefixed by any containing group name, to a /// buffer. /// /// Uses token to look up AP_Param::Info for the variable void copy_name_token(const ParamToken &token, char *buffer, size_t bufferSize, bool force_scalar=false) const; /// Find a variable by name. /// /// If the variable has no name, it cannot be found by this interface. /// /// @param name The full name of the variable to be found. /// @return A pointer to the variable, or NULL if /// it does not exist. /// static AP_Param * find(const char *name, enum ap_var_type *ptype); /// set a default value by name /// /// @param name The full name of the variable to be found. /// @param value The default value /// @return true if the variable is found static bool set_default_by_name(const char *name, float value); /// Find a variable by index. /// /// /// @param idx The index of the variable /// @return A pointer to the variable, or NULL if /// it does not exist. /// static AP_Param * find_by_index(uint16_t idx, enum ap_var_type *ptype, ParamToken *token); /// Find a variable by pointer /// /// /// @param p Pointer to variable /// @return key for variable static bool find_key_by_pointer_group(const void *ptr, uint16_t vindex, const struct GroupInfo *group_info, ptrdiff_t offset, uint16_t &key); static bool find_key_by_pointer(const void *ptr, uint16_t &key); /// Find a object in the top level var_info table /// /// If the variable has no name, it cannot be found by this interface. /// /// @param name The full name of the variable to be found. /// static AP_Param * find_object(const char *name); /// Notify GCS of current parameter value /// void notify() const; /// Save the current value of the variable to EEPROM. /// /// @param force_save If true then force save even if default /// /// @return True if the variable was saved successfully. /// bool save(bool force_save=false); /// Load the variable from EEPROM. /// /// @return True if the variable was loaded successfully. /// bool load(void); /// Load all variables from EEPROM /// /// This function performs a best-efforts attempt to load all /// of the variables from EEPROM. If some fail to load, their /// values will remain as they are. /// /// @return False if any variable failed to load /// static bool load_all(void); static void load_object_from_eeprom(const void *object_pointer, const struct GroupInfo *group_info); // set a AP_Param variable to a specified value static void set_value(enum ap_var_type type, void *ptr, float def_value); /* set a parameter to a float */ void set_float(float value, enum ap_var_type var_type); // load default values for scalars in a group static void setup_object_defaults(const void *object_pointer, const struct GroupInfo *group_info); // set a value directly in an object. This should only be used by // example code, not by mainline vehicle code static void set_object_value(const void *object_pointer, const struct GroupInfo *group_info, const char *name, float value); // load default values for all scalars in the main sketch. This // does not recurse into the sub-objects static void setup_sketch_defaults(void); // convert old vehicle parameters to new object parameters static void convert_old_parameters(const struct ConversionInfo *conversion_table, uint8_t table_size); // convert a single parameter with scaling static void convert_old_parameter(const struct ConversionInfo *info, float scaler); /// Erase all variables in EEPROM. /// static void erase_all(void); /// print the value of all variables static void show_all(AP_HAL::BetterStream *port, bool showKeyValues=false); /// print the value of one variable static void show(const AP_Param *param, const char *name, enum ap_var_type ptype, AP_HAL::BetterStream *port); /// print the value of one variable static void show(const AP_Param *param, const ParamToken &token, enum ap_var_type ptype, AP_HAL::BetterStream *port); /// Returns the first variable /// /// @return The first variable in _var_info, or NULL if /// there are none. /// static AP_Param * first(ParamToken *token, enum ap_var_type *ptype); /// Returns the next variable in _var_info, recursing into groups /// as needed static AP_Param * next(ParamToken *token, enum ap_var_type *ptype); /// Returns the next scalar variable in _var_info, recursing into groups /// as needed static AP_Param * next_scalar(ParamToken *token, enum ap_var_type *ptype); /// cast a variable to a float given its type float cast_to_float(enum ap_var_type type) const; // check var table for consistency static bool check_var_info(void); // return true if the parameter is configured in the defaults file bool configured_in_defaults_file(void); // return true if the parameter is configured in EEPROM/FRAM bool configured_in_storage(void); // return true if the parameter is configured bool configured(void) { return configured_in_defaults_file() || configured_in_storage(); } // count of parameters in tree static uint16_t count_parameters(void); private: /// EEPROM header /// /// This structure is placed at the head of the EEPROM to indicate /// that the ROM is formatted for AP_Param. /// struct EEPROM_header { uint8_t magic[2]; uint8_t revision; uint8_t spare; }; /* This header is prepended to a variable stored in EEPROM. * The meaning is as follows: * * - key: the k_param enum value from Parameter.h in the sketch * * - group_element: This is zero for top level parameters. For * parameters stored within an object this is divided * into 3 lots of 6 bits, allowing for three levels * of object to be stored in the eeprom * * - type: the ap_var_type value for the variable */ struct Param_header { // to get 9 bits for key we needed to split it into two parts to keep binary compatibility uint32_t key_low : 8; uint32_t type : 5; uint32_t key_high : 1; uint32_t group_element : 18; }; // number of bits in each level of nesting of groups static const uint8_t _group_level_shift = 6; static const uint8_t _group_bits = 18; static const uint16_t _sentinal_key = 0x1FF; static const uint8_t _sentinal_type = 0x1F; static const uint8_t _sentinal_group = 0xFF; static bool check_group_info(const struct GroupInfo *group_info, uint16_t *total_size, uint8_t max_bits, uint8_t prefix_length); static bool duplicate_key(uint16_t vindex, uint16_t key); static bool adjust_group_offset(uint16_t vindex, const struct GroupInfo &group_info, ptrdiff_t &new_offset); static bool get_base(const struct Info &info, ptrdiff_t &base); const struct Info * find_var_info_group( const struct GroupInfo * group_info, uint16_t vindex, uint32_t group_base, uint8_t group_shift, ptrdiff_t group_offset, uint32_t * group_element, const struct GroupInfo * &group_ret, struct GroupNesting &group_nesting, uint8_t * idx) const; const struct Info * find_var_info( uint32_t * group_element, const struct GroupInfo * &group_ret, struct GroupNesting &group_nesting, uint8_t * idx) const; const struct Info * find_var_info_token(const ParamToken &token, uint32_t * group_element, const struct GroupInfo * &group_ret, struct GroupNesting &group_nesting, uint8_t * idx) const; static const struct Info * find_by_header_group( struct Param_header phdr, void **ptr, uint16_t vindex, const struct GroupInfo *group_info, uint8_t group_base, uint8_t group_shift, ptrdiff_t group_offset); static const struct Info * find_by_header( struct Param_header phdr, void **ptr); void add_vector3f_suffix( char *buffer, size_t buffer_size, uint8_t idx) const; static AP_Param * find_group( const char *name, uint16_t vindex, ptrdiff_t group_offset, const struct GroupInfo *group_info, enum ap_var_type *ptype); static void write_sentinal(uint16_t ofs); static uint16_t get_key(const Param_header &phdr); static void set_key(Param_header &phdr, uint16_t key); static bool is_sentinal(const Param_header &phrd); static bool scan( const struct Param_header *phdr, uint16_t *pofs); static uint8_t type_size(enum ap_var_type type); static void eeprom_write_check( const void *ptr, uint16_t ofs, uint8_t size); static AP_Param * next_group( uint16_t vindex, const struct GroupInfo *group_info, bool *found_current, uint8_t group_base, uint8_t group_shift, ptrdiff_t group_offset, ParamToken *token, enum ap_var_type *ptype); // find a default value given a pointer to a default value in flash static float get_default_value(const float *def_value_ptr); /* find the def_value for a variable by name */ static const float *find_def_value_ptr(const char *name); #if HAL_OS_POSIX_IO == 1 /* load a parameter defaults file. This happens as part of load_all() */ static bool parse_param_line(char *line, char **vname, float &value); static bool load_defaults_file(const char *filename); #endif // send a parameter to all GCS instances void send_parameter(const char *name, enum ap_var_type param_header_type, uint8_t idx) const; static StorageAccess _storage; static uint16_t _num_vars; static uint16_t _parameter_count; static const struct Info * _var_info; /* list of overridden values from load_defaults_file() */ struct param_override { const float *def_value_ptr; float value; }; static struct param_override *param_overrides; static uint16_t num_param_overrides; // values filled into the EEPROM header static const uint8_t k_EEPROM_magic0 = 0x50; static const uint8_t k_EEPROM_magic1 = 0x41; ///< "AP" static const uint8_t k_EEPROM_revision = 6; ///< current format revision }; /// Template class for scalar variables. /// /// Objects of this type have a value, and can be treated in many ways as though they /// were the value. /// /// @tparam T The scalar type of the variable /// @tparam PT The AP_PARAM_* type /// template class AP_ParamT : public AP_Param { public: static const ap_var_type vtype = PT; /// Value getter /// const T &get(void) const { return _value; } /// Value setter /// void set(const T &v) { _value = v; } /// Sets if the parameter is unconfigured /// void set_default(const T &v) { if (!configured()) { set(v); } } /// Value setter - set value, tell GCS /// void set_and_notify(const T &v) { set(v); notify(); } /// Combined set and save /// bool set_and_save(const T &v) { bool force = fabsf(_value - v) < FLT_EPSILON; set(v); return save(force); } /// Combined set and save, but only does the save if the value if /// different from the current ram value, thus saving us a /// scan(). This should only be used where we have not set() the /// value separately, as otherwise the value in EEPROM won't be /// updated correctly. bool set_and_save_ifchanged(const T &v) { if (v == _value) { return true; } set(v); return save(true); } /// Conversion to T returns a reference to the value. /// /// This allows the class to be used in many situations where the value would be legal. /// operator const T &() const { return _value; } /// Copy assignment from T is equivalent to ::set. /// AP_ParamT& operator= (const T &v) { _value = v; return *this; } /// bit ops on parameters /// AP_ParamT& operator |=(const T &v) { _value |= v; return *this; } AP_ParamT& operator &=(const T &v) { _value &= v; return *this; } AP_ParamT& operator +=(const T &v) { _value += v; return *this; } AP_ParamT& operator -=(const T &v) { _value -= v; return *this; } /// AP_ParamT types can implement AP_Param::cast_to_float /// float cast_to_float(void) const { return (float)_value; } protected: T _value; }; /// Template class for non-scalar variables. /// /// Objects of this type have a value, and can be treated in many ways as though they /// were the value. /// /// @tparam T The scalar type of the variable /// @tparam PT AP_PARAM_* type /// template class AP_ParamV : public AP_Param { public: static const ap_var_type vtype = PT; /// Value getter /// const T &get(void) const { return _value; } /// Value setter /// void set(const T &v) { _value = v; } /// Combined set and save /// bool set_and_save(const T &v) { bool force = (_value != v); set(v); return save(force); } /// Conversion to T returns a reference to the value. /// /// This allows the class to be used in many situations where the value would be legal. /// operator const T &() const { return _value; } /// Copy assignment from T is equivalent to ::set. /// AP_ParamV& operator=(const T &v) { _value = v; return *this; } protected: T _value; }; /// Template class for array variables. /// /// Objects created using this template behave like arrays of the type T, /// but are stored like single variables. /// /// @tparam T The scalar type of the variable /// @tparam N number of elements /// @tparam PT the AP_PARAM_* type /// template class AP_ParamA : public AP_Param { public: static const ap_var_type vtype = PT; /// Array operator accesses members. /// /// @note It would be nice to range-check i here, but then what would we return? /// const T & operator[](uint8_t i) { return _value[i]; } const T & operator[](int8_t i) { return _value[(uint8_t)i]; } /// Value getter /// /// @note Returns zero for index values out of range. /// T get(uint8_t i) const { if (i < N) { return _value[i]; } else { return (T)0; } } /// Value setter /// /// @note Attempts to set an index out of range are discarded. /// void set(uint8_t i, const T &v) { if (i < N) { _value[i] = v; } } protected: T _value[N]; }; /// Convenience macro for defining instances of the AP_ParamT template. /// // declare a scalar type // _t is the base type // _suffix is the suffix on the AP_* type name // _pt is the enum ap_var_type type #define AP_PARAMDEF(_t, _suffix, _pt) typedef AP_ParamT<_t, _pt> AP_ ## _suffix; AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8 AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16 AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32 // declare a non-scalar type // this is used in AP_Math.h // _t is the base type // _suffix is the suffix on the AP_* type name // _pt is the enum ap_var_type type #define AP_PARAMDEFV(_t, _suffix, _pt) typedef AP_ParamV<_t, _pt> AP_ ## _suffix;