// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsSingle.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsSingle.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsSingle::var_info[] PROGMEM = { // 0 was used by TB_RATIO // 1,2,3 were used by throttle curve // @Param: SPIN_ARMED // @DisplayName: Motors always spin when armed // @Description: Controls whether motors always spin when armed (must be below THR_MIN) // @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast // @User: Standard AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsSingle, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED), // @Param: REV_ROLL // @DisplayName: Reverse roll feedback // @Description: Ensure the feedback is negative // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("REV_ROLL", 6, AP_MotorsSingle, _rev_roll, AP_MOTORS_SING_POSITIVE), // @Param: REV_PITCH // @DisplayName: Reverse pitch feedback // @Description: Ensure the feedback is negative // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("REV_PITCH", 7, AP_MotorsSingle, _rev_pitch, AP_MOTORS_SING_POSITIVE), // @Param: REV_YAW // @DisplayName: Reverse yaw feedback // @Description: Ensure the feedback is negative // @Values: -1:Opposite direction,1:Same direction AP_GROUPINFO("REV_YAW", 8, AP_MotorsSingle, _rev_yaw, AP_MOTORS_SING_POSITIVE), // @Param: SV_SPEED // @DisplayName: Servo speed // @Description: Servo update speed in hz // @Values: 50, 125, 250 AP_GROUPINFO("SV_SPEED", 9, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), AP_GROUPEND }; // init void AP_MotorsSingle::Init() { // call parent Init function to set-up throttle curve AP_Motors::Init(); // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the main ESC can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_7] = true; // we set four servos to angle _servo1.set_type(RC_CHANNEL_TYPE_ANGLE); _servo2.set_type(RC_CHANNEL_TYPE_ANGLE); _servo3.set_type(RC_CHANNEL_TYPE_ANGLE); _servo4.set_type(RC_CHANNEL_TYPE_ANGLE); _servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); // disable CH7 from being used as an aux output (i.e. for camera gimbal, etc) RC_Channel_aux::disable_aux_channel(CH_7); } // set update rate to motors - a value in hertz void AP_MotorsSingle::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]) ; hal.rcout->set_freq(mask, _servo_speed); uint32_t mask2 = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]); hal.rcout->set_freq(mask2, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsSingle::enable() { // enable output channels hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7])); } // output_min - sends minimum values out to the motor and trim values to the servos void AP_MotorsSingle::output_min() { // send minimum value to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_trim); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_trim); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), _rc_throttle.radio_min); } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsSingle::get_motor_mask() { // single copter uses channels 1,2,3,4 and 7 return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << 6); } // output_armed - sends commands to the motors void AP_MotorsSingle::output_armed() { int16_t out_min = _rc_throttle.radio_min + _min_throttle; int16_t motor_out; // main motor output // Throttle is 0 to 1000 only if (_rc_throttle.servo_out <= 0) { _rc_throttle.servo_out = 0; limit.throttle_lower = true; } if (_rc_throttle.servo_out >= _max_throttle) { _rc_throttle.servo_out = _max_throttle; limit.throttle_upper = true; } // capture desired throttle from receiver _rc_throttle.calc_pwm(); // if we are not sending a throttle output, we cut the motors if(_rc_throttle.servo_out == 0) { // range check spin_when_armed if (_spin_when_armed < 0) { _spin_when_armed = 0; } if (_spin_when_armed > _min_throttle) { _spin_when_armed = _min_throttle; } // throttle is limited motor_out = _rc_throttle.radio_min + _spin_when_armed; }else{ // check if throttle is at or below limit if (_rc_throttle.servo_out <= _min_throttle) { limit.throttle_lower = true; _rc_throttle.servo_out = _min_throttle; _rc_throttle.calc_pwm(); // recalculate radio.out } //motor motor_out = _rc_throttle.radio_out; // adjust for thrust curve and voltage scaling motor_out = apply_thrust_curve_and_volt_scaling(motor_out, out_min, _rc_throttle.radio_max); // ensure motor doesn't drop below a minimum value and stop motor_out = max(motor_out, out_min); } // front servo _servo1.servo_out = _rev_roll*_rc_roll.servo_out + _rev_yaw*_rc_yaw.servo_out; // right servo _servo2.servo_out = _rev_pitch*_rc_pitch.servo_out + _rev_yaw*_rc_yaw.servo_out; // rear servo _servo3.servo_out = -_rev_roll*_rc_roll.servo_out + _rev_yaw*_rc_yaw.servo_out; // left servo _servo4.servo_out = -_rev_pitch*_rc_pitch.servo_out + _rev_yaw*_rc_yaw.servo_out; _servo1.calc_pwm(); _servo2.calc_pwm(); _servo3.calc_pwm(); _servo4.calc_pwm(); // send output to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_out); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_out); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), motor_out); } // output_disarmed - sends commands to the motors void AP_MotorsSingle::output_disarmed() { // Send minimum values to all motors output_min(); } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsSingle::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!_flags.armed) { return; } // output to motors and servos switch (motor_seq) { case 1: // flap servo 1 hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm); break; case 2: // flap servo 2 hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm); break; case 3: // flap servo 3 hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm); break; case 4: // flap servo 4 hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm); break; case 5: // spin main motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), pwm); break; default: // do nothing break; } }