/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "GPIO.h" #include #include #include #include /* PX4 headers */ #include #include #include #include #include #include #define LOW 0 #define HIGH 1 extern const AP_HAL::HAL& hal; using namespace PX4; PX4GPIO::PX4GPIO() {} void PX4GPIO::init() { #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 _led_fd = open(LED0_DEVICE_PATH, O_RDWR); if (_led_fd == -1) { hal.scheduler->panic("Unable to open " LED0_DEVICE_PATH); } if (ioctl(_led_fd, LED_OFF, LED_BLUE) != 0) { hal.console->printf("GPIO: Unable to setup GPIO LED BLUE\n"); } if (ioctl(_led_fd, LED_OFF, LED_RED) != 0) { hal.console->printf("GPIO: Unable to setup GPIO LED RED\n"); } #endif _tone_alarm_fd = open(TONEALARM0_DEVICE_PATH, O_WRONLY); if (_tone_alarm_fd == -1) { hal.scheduler->panic("Unable to open " TONEALARM0_DEVICE_PATH); } _gpio_fmu_fd = open(PX4FMU_DEVICE_PATH, 0); if (_gpio_fmu_fd == -1) { hal.scheduler->panic("Unable to open GPIO"); } #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 if (ioctl(_gpio_fmu_fd, GPIO_CLEAR, GPIO_EXT_1) != 0) { hal.console->printf("GPIO: Unable to setup GPIO_1\n"); } #endif // also try to setup for the relay pins on the IO board _gpio_io_fd = open(PX4IO_DEVICE_PATH, O_RDWR); if (_gpio_io_fd == -1) { hal.console->printf("GPIO: Unable to open px4io\n"); } } void PX4GPIO::pinMode(uint8_t pin, uint8_t output) { switch (pin) { case PX4_GPIO_FMU_SERVO_PIN(0) ... PX4_GPIO_FMU_SERVO_PIN(5): ioctl(_gpio_fmu_fd, output?GPIO_SET_OUTPUT:GPIO_SET_INPUT, 1U<<(pin-PX4_GPIO_FMU_SERVO_PIN(0))); break; } } int8_t PX4GPIO::analogPinToDigitalPin(uint8_t pin) { switch (pin) { case PX4_GPIO_FMU_SERVO_PIN(0) ... PX4_GPIO_FMU_SERVO_PIN(5): // the only pins that can be mapped are the FMU servo rail pins */ return pin; } return -1; } uint8_t PX4GPIO::read(uint8_t pin) { switch (pin) { #ifdef GPIO_EXT_1 case PX4_GPIO_EXT_FMU_RELAY1_PIN: { uint32_t relays = 0; ioctl(_gpio_fmu_fd, GPIO_GET, (unsigned long)&relays); return (relays & GPIO_EXT_1)?HIGH:LOW; } #endif #ifdef GPIO_EXT_2 case PX4_GPIO_EXT_FMU_RELAY2_PIN: { uint32_t relays = 0; ioctl(_gpio_fmu_fd, GPIO_GET, (unsigned long)&relays); return (relays & GPIO_EXT_2)?HIGH:LOW; } #endif #ifdef PX4IO_P_SETUP_RELAYS_POWER1 case PX4_GPIO_EXT_IO_RELAY1_PIN: { uint32_t relays = 0; ioctl(_gpio_io_fd, GPIO_GET, (unsigned long)&relays); return (relays & PX4IO_P_SETUP_RELAYS_POWER1)?HIGH:LOW; } #endif #ifdef PX4IO_P_SETUP_RELAYS_POWER2 case PX4_GPIO_EXT_IO_RELAY2_PIN: { uint32_t relays = 0; ioctl(_gpio_io_fd, GPIO_GET, (unsigned long)&relays); return (relays & PX4IO_P_SETUP_RELAYS_POWER2)?HIGH:LOW; } #endif #ifdef PX4IO_P_SETUP_RELAYS_ACC1 case PX4_GPIO_EXT_IO_ACC1_PIN: { uint32_t relays = 0; ioctl(_gpio_io_fd, GPIO_GET, (unsigned long)&relays); return (relays & PX4IO_P_SETUP_RELAYS_ACC1)?HIGH:LOW; } #endif #ifdef PX4IO_P_SETUP_RELAYS_ACC2 case PX4_GPIO_EXT_IO_ACC2_PIN: { uint32_t relays = 0; ioctl(_gpio_io_fd, GPIO_GET, (unsigned long)&relays); return (relays & PX4IO_P_SETUP_RELAYS_ACC2)?HIGH:LOW; } #endif case PX4_GPIO_FMU_SERVO_PIN(0) ... PX4_GPIO_FMU_SERVO_PIN(5): { uint32_t relays = 0; ioctl(_gpio_fmu_fd, GPIO_GET, (unsigned long)&relays); return (relays & (1U<<(pin-PX4_GPIO_FMU_SERVO_PIN(0))))?HIGH:LOW; } } return LOW; } void PX4GPIO::write(uint8_t pin, uint8_t value) { switch (pin) { #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 case HAL_GPIO_A_LED_PIN: // Arming LED if (value == LOW) { ioctl(_led_fd, LED_OFF, LED_RED); } else { ioctl(_led_fd, LED_ON, LED_RED); } break; case HAL_GPIO_B_LED_PIN: // not used yet break; case HAL_GPIO_C_LED_PIN: // GPS LED if (value == LOW) { ioctl(_led_fd, LED_OFF, LED_BLUE); } else { ioctl(_led_fd, LED_ON, LED_BLUE); } break; #endif case PX4_GPIO_PIEZO_PIN: // Piezo beeper if (value == LOW) { // this is inverted ioctl(_tone_alarm_fd, TONE_SET_ALARM, 3); // Alarm on !! //::write(_tone_alarm_fd, &user_tune, sizeof(user_tune)); } else { ioctl(_tone_alarm_fd, TONE_SET_ALARM, 0); // Alarm off !! } break; #ifdef GPIO_EXT_1 case PX4_GPIO_EXT_FMU_RELAY1_PIN: ioctl(_gpio_fmu_fd, value==LOW?GPIO_CLEAR:GPIO_SET, GPIO_EXT_1); break; #endif #ifdef GPIO_EXT_2 case PX4_GPIO_EXT_FMU_RELAY2_PIN: ioctl(_gpio_fmu_fd, value==LOW?GPIO_CLEAR:GPIO_SET, GPIO_EXT_2); break; #endif #ifdef PX4IO_P_SETUP_RELAYS_POWER1 case PX4_GPIO_EXT_IO_RELAY1_PIN: ioctl(_gpio_io_fd, value==LOW?GPIO_CLEAR:GPIO_SET, PX4IO_P_SETUP_RELAYS_POWER1); break; #endif #ifdef PX4IO_P_SETUP_RELAYS_POWER2 case PX4_GPIO_EXT_IO_RELAY2_PIN: ioctl(_gpio_io_fd, value==LOW?GPIO_CLEAR:GPIO_SET, PX4IO_P_SETUP_RELAYS_POWER2); break; #endif #ifdef PX4IO_P_SETUP_RELAYS_ACC1 case PX4_GPIO_EXT_IO_ACC1_PIN: ioctl(_gpio_io_fd, value==LOW?GPIO_CLEAR:GPIO_SET, PX4IO_P_SETUP_RELAYS_ACC1); break; #endif #ifdef PX4IO_P_SETUP_RELAYS_ACC2 case PX4_GPIO_EXT_IO_ACC2_PIN: ioctl(_gpio_io_fd, value==LOW?GPIO_CLEAR:GPIO_SET, PX4IO_P_SETUP_RELAYS_ACC2); break; #endif case PX4_GPIO_FMU_SERVO_PIN(0) ... PX4_GPIO_FMU_SERVO_PIN(5): ioctl(_gpio_fmu_fd, value==LOW?GPIO_CLEAR:GPIO_SET, 1U<<(pin-PX4_GPIO_FMU_SERVO_PIN(0))); break; } } void PX4GPIO::toggle(uint8_t pin) { write(pin, !read(pin)); } /* Alternative interface: */ AP_HAL::DigitalSource* PX4GPIO::channel(uint16_t n) { return new PX4DigitalSource(0); } /* Interrupt interface: */ bool PX4GPIO::attach_interrupt(uint8_t interrupt_num, AP_HAL::Proc p, uint8_t mode) { return true; } /* return true when USB connected */ bool PX4GPIO::usb_connected(void) { struct stat st; /* we use a combination of voltage on the USB connector and the existance of the /dev/ttyACM0 character device. This copes with systems where the VBUS may go high even with no USB connected */ return stm32_gpioread(GPIO_OTGFS_VBUS) && stat("/dev/ttyACM0", &st) == 0; } PX4DigitalSource::PX4DigitalSource(uint8_t v) : _v(v) {} void PX4DigitalSource::mode(uint8_t output) {} uint8_t PX4DigitalSource::read() { return _v; } void PX4DigitalSource::write(uint8_t value) { _v = value; } void PX4DigitalSource::toggle() { _v = !_v; } #endif // CONFIG_HAL_BOARD