/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity_RangeFinder.h" #if HAL_PROXIMITY_ENABLED #include #include #include #include #include // update the state of the sensor void AP_Proximity_RangeFinder::update(void) { // exit immediately if no rangefinder object const RangeFinder *rngfnd = AP::rangefinder(); if (rngfnd == nullptr) { set_status(AP_Proximity::Status::NoData); return; } uint32_t now = AP_HAL::millis(); // look through all rangefinders for (uint8_t i=0; i < rngfnd->num_sensors(); i++) { AP_RangeFinder_Backend *sensor = rngfnd->get_backend(i); if (sensor == nullptr) { continue; } if (sensor->has_data()) { // check for horizontal range finders if (sensor->orientation() <= ROTATION_YAW_315) { const uint8_t sector = (uint8_t)sensor->orientation(); const float angle = sector * 45; const AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face(angle); // distance in meters const float distance = sensor->distance(); _distance_min = sensor->min_distance_cm() * 0.01f; _distance_max = sensor->max_distance_cm() * 0.01f; if ((distance <= _distance_max) && (distance >= _distance_min) && !ignore_reading(angle, distance, false)) { frontend.boundary.set_face_attributes(face, angle, distance, state.instance); // update OA database database_push(angle, distance); } else { frontend.boundary.reset_face(face, state.instance); } _last_update_ms = now; } // check upward facing range finder if (sensor->orientation() == ROTATION_PITCH_90) { int16_t distance_upward = sensor->distance_cm(); int16_t up_distance_min = sensor->min_distance_cm(); int16_t up_distance_max = sensor->max_distance_cm(); if ((distance_upward >= up_distance_min) && (distance_upward <= up_distance_max)) { _distance_upward = distance_upward * 0.01f; } else { _distance_upward = -1.0; // mark an valid reading } _last_upward_update_ms = now; } } } // check for timeout and set health status if ((_last_update_ms == 0 || (now - _last_update_ms > PROXIMITY_RANGEFIDER_TIMEOUT_MS)) && (_last_upward_update_ms == 0 || (now - _last_upward_update_ms > PROXIMITY_RANGEFIDER_TIMEOUT_MS))) { set_status(AP_Proximity::Status::NoData); } else { set_status(AP_Proximity::Status::Good); } } // get distance upwards in meters. returns true on success bool AP_Proximity_RangeFinder::get_upward_distance(float &distance) const { if ((AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_RANGEFIDER_TIMEOUT_MS) && is_positive(_distance_upward)) { distance = _distance_upward; return true; } return false; } #endif // HAL_PROXIMITY_ENABLED