/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // 10 = 1 second #define ARM_DELAY 20 #define DISARM_DELAY 20 #define LEVEL_DELAY 100 // called at 10hz static void arm_motors() { static int arming_counter; // don't allow arming/disarming in anything but manual if ((g.rc_3.control_in > 0) || (control_mode >= ALT_HOLD) || (arming_counter > LEVEL_DELAY)){ arming_counter = 0; return; } // full right if (g.rc_4.control_in > 4000) { if (arming_counter == LEVEL_DELAY){ //Serial.printf("\nAL\n"); // begin auto leveling auto_level_counter = 250; arming_counter = 0; }else if (arming_counter == ARM_DELAY){ if(motors.armed() == false){ // arm the motors and configure for flight //////////////////////////////////////////////////////////////////////////////// // Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters //////////////////////////////////////////////////////////////////////////////// #ifdef AP_LIMITS if (limits.enabled() && limits.required()) { gcs_send_text_P(SEVERITY_LOW, PSTR("Limits - Running pre-arm checks")); // check only pre-arm required modules if (limits.check_required()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ARMING PREVENTED - Limit Breached")); limits.set_state(LIMITS_TRIGGERED); gcs_send_message(MSG_LIMITS_STATUS); arming_counter++; // restart timer by cycling } else { init_arm_motors(); } } else init_arm_motors(); #else // without AP_LIMITS, just arm motors init_arm_motors(); #endif //AP_LIMITS_ENABLED } // keep going up arming_counter++; } else{ arming_counter++; } // full left }else if (g.rc_4.control_in < -4000) { if (arming_counter == LEVEL_DELAY){ //Serial.printf("\nLEV\n"); // begin manual leveling imu.init_accel(mavlink_delay, flash_leds); arming_counter = 0; }else if (arming_counter == DISARM_DELAY){ if(motors.armed()){ // arm the motors and configure for flight init_disarm_motors(); } // keep going up arming_counter++; }else{ arming_counter++; } // Yaw is centered }else{ arming_counter = 0; } } static void init_arm_motors() { // Flag used to track if we have armed the motors the first time. // This is used to decide if we should run the ground_start routine // which calibrates the IMU static bool did_ground_start = false; //Serial.printf("\nARM\n"); #if HIL_MODE != HIL_MODE_DISABLED || defined(DESKTOP_BUILD) gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); #endif // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we arm // the motors Serial.set_blocking_writes(false); if (gcs3.initialised) { Serial3.set_blocking_writes(false); } motors.armed(true); #if COPTER_LEDS == ENABLED if ( bitRead(g.copter_leds_mode, 3) ){ piezo_beep(); delay(50); piezo_beep(); } #endif // Remember Orientation // -------------------- init_simple_bearing(); init_z_damper(); // Reset home position // ------------------- if(home_is_set) init_home(); // all I terms are invalid // ----------------------- reset_I_all(); if(did_ground_start == false){ did_ground_start = true; startup_ground(); } #if HIL_MODE != HIL_MODE_ATTITUDE // read Baro pressure at ground - // this resets Baro for more accuracy //----------------------------------- init_barometer(); #endif // temp hack motor_light = true; digitalWrite(A_LED_PIN, LED_ON); } static void init_disarm_motors() { //Serial.printf("\nDISARM\n"); #if HIL_MODE != HIL_MODE_DISABLED || defined(DESKTOP_BUILD) gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); #endif motors.armed(false); compass.save_offsets(); g.throttle_cruise.save(); // we are not in the air takeoff_complete = false; #if COPTER_LEDS == ENABLED if ( bitRead(g.copter_leds_mode, 3) ){ piezo_beep(); } #endif } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos_4() { motors.output(); }