/* * The MIT License (MIT) * * Copyright (c) 2014 Pavel Kirienko * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Siddharth Bharat Purohit */ #include "AP_HAL_ChibiOS.h" #if HAL_WITH_UAVCAN #include #include #include "CANClock.h" #include "CANInternal.h" #include "CANSerialRouter.h" #include #include # include # if defined(STM32H7XX) #include "CANFDIface.h" #define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER #define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER #define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER #define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER #define FDCAN_FRAME_BUFFER_SIZE 4 // Buffer size for 8 bytes data field //Message RAM Allocations in Word lengths #define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List #define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames #define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames #define MESSAGE_RAM_END_ADDR 0x4000B5FC extern const AP_HAL::HAL& hal; namespace ChibiOS_CAN { namespace { CanIface* ifaces[UAVCAN_STM32_NUM_IFACES] = { UAVCAN_NULLPTR #if UAVCAN_STM32_NUM_IFACES > 1 , UAVCAN_NULLPTR #endif }; inline void handleInterrupt(uavcan::uint8_t iface_index, uavcan::uint8_t line_index) { UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES); if (ifaces[iface_index] == UAVCAN_NULLPTR) { //Just reset all the interrupts and return ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF0N; ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF1N; ifaces[iface_index]->can_reg()->IR = FDCAN_IR_TEFN; UAVCAN_ASSERT(0); return; } if (line_index == 0) { if ((ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF0N) || (ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF0F)) { ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F; ifaces[iface_index]->handleRxInterrupt(0); } if ((ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF1N) || (ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF1F)) { ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F; ifaces[iface_index]->handleRxInterrupt(1); } } else { if (ifaces[iface_index]->can_reg()->IR & FDCAN_IR_TC) { ifaces[iface_index]->can_reg()->IR = FDCAN_IR_TC; uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); if (utc_usec > 0) { utc_usec--; } ifaces[iface_index]->handleTxCompleteInterrupt(utc_usec); } } ifaces[iface_index]->pollErrorFlagsFromISR(); } } // namespace uint32_t CanIface::FDCANMessageRAMOffset_ = 0; #if !HAL_MINIMIZE_FEATURES SLCANRouter CanIface::_slcan_router; #endif CanIface::CanIface(fdcan::CanType* can, BusEvent& update_event, uavcan::uint8_t self_index, CanRxItem* rx_queue_buffer, uavcan::uint8_t rx_queue_capacity) : rx_queue_(rx_queue_buffer, rx_queue_capacity) , can_(can) , error_cnt_(0) , served_aborts_cnt_(0) , update_event_(update_event) , peak_tx_mailbox_index_(0) , self_index_(self_index) , had_activity_(false) { UAVCAN_ASSERT(self_index_ < UAVCAN_STM32_NUM_IFACES); } /* * CanIface::RxQueue */ void CanIface::RxQueue::registerOverflow() { if (overflow_cnt_ < 0xFFFFFFFF) { overflow_cnt_++; } } void CanIface::RxQueue::push(const uavcan::CanFrame& frame, const uint64_t& utc_usec, uavcan::CanIOFlags flags) { buf_[in_].frame = frame; buf_[in_].utc_usec = utc_usec; buf_[in_].flags = flags; in_++; if (in_ >= capacity_) { in_ = 0; } len_++; if (len_ > capacity_) { len_ = capacity_; registerOverflow(); out_++; if (out_ >= capacity_) { out_ = 0; } } } void CanIface::RxQueue::pop(uavcan::CanFrame& out_frame, uavcan::uint64_t& out_utc_usec, uavcan::CanIOFlags& out_flags) { if (len_ > 0) { out_frame = buf_[out_].frame; out_utc_usec = buf_[out_].utc_usec; out_flags = buf_[out_].flags; out_++; if (out_ >= capacity_) { out_ = 0; } len_--; } else { UAVCAN_ASSERT(0); } } void CanIface::RxQueue::reset() { in_ = 0; out_ = 0; len_ = 0; overflow_cnt_ = 0; } int CanIface::computeTimings(const uavcan::uint32_t target_bitrate, Timings& out_timings) { if (target_bitrate < 1) { return -ErrInvalidBitRate; } /* * Hardware configuration */ const uavcan::uint32_t pclk = STM32_PLL1_Q_CK; static const int MaxBS1 = 16; static const int MaxBS2 = 8; /* * Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG * CAN in Automation, 2003 * * According to the source, optimal quanta per bit are: * Bitrate Optimal Maximum * 1000 kbps 8 10 * 500 kbps 16 17 * 250 kbps 16 17 * 125 kbps 16 17 */ const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; UAVCAN_ASSERT(max_quanta_per_bit <= (MaxBS1 + MaxBS2)); static const int MaxSamplePointLocation = 900; /* * Computing (prescaler * BS): * BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual * BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified * let: * BS = 1 + BS1 + BS2 -- Number of time quanta per bit * PRESCALER_BS = PRESCALER * BS * ==> * PRESCALER_BS = PCLK / BITRATE */ const uavcan::uint32_t prescaler_bs = pclk / target_bitrate; /* * Searching for such prescaler value so that the number of quanta per bit is highest. */ uavcan::uint8_t bs1_bs2_sum = uavcan::uint8_t(max_quanta_per_bit - 1); while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { if (bs1_bs2_sum <= 2) { return -ErrInvalidBitRate; // No solution } bs1_bs2_sum--; } const uavcan::uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); if ((prescaler < 1U) || (prescaler > 1024U)) { return -ErrInvalidBitRate; // No solution } /* * Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. * We need to find the values so that the sample point is as close as possible to the optimal value. * * Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) * {{bs2 -> (1 + bs1)/7}} * * Hence: * bs2 = (1 + bs1) / 7 * bs1 = (7 * bs1_bs2_sum - 1) / 8 * * Sample point location can be computed as follows: * Sample point location = (1 + bs1) / (1 + bs1 + bs2) * * Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: * - With rounding to nearest * - With rounding to zero */ struct BsPair { uavcan::uint8_t bs1; uavcan::uint8_t bs2; uavcan::uint16_t sample_point_permill; BsPair() : bs1(0), bs2(0), sample_point_permill(0) { } BsPair(uavcan::uint8_t bs1_bs2_sum, uavcan::uint8_t arg_bs1) : bs1(arg_bs1), bs2(uavcan::uint8_t(bs1_bs2_sum - bs1)), sample_point_permill(uavcan::uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) { UAVCAN_ASSERT(bs1_bs2_sum > arg_bs1); } bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); } }; // First attempt with rounding to nearest BsPair solution(bs1_bs2_sum, uavcan::uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); if (solution.sample_point_permill > MaxSamplePointLocation) { // Second attempt with rounding to zero solution = BsPair(bs1_bs2_sum, uavcan::uint8_t((7 * bs1_bs2_sum - 1) / 8)); } /* * Final validation * Helpful Python: * def sample_point_from_btr(x): * assert 0b0011110010000000111111000000000 & x == 0 * ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 * return (1+ts1+1)/(1+ts1+1+ts2+1) * */ if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { UAVCAN_ASSERT(0); return -ErrLogic; } UAVCAN_STM32_LOG("Timings: quanta/bit: %d, sample point location: %.1f%%", int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); out_timings.prescaler = uavcan::uint16_t(prescaler - 1U); out_timings.sjw = 0; // Which means one out_timings.bs1 = uavcan::uint8_t(solution.bs1 - 1); out_timings.bs2 = uavcan::uint8_t(solution.bs2 - 1); return 0; } uavcan::int16_t CanIface::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags) { if (frame.isErrorFrame() || frame.dlc > 8) { return -ErrUnsupportedFrame; } /* * Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because * it is possible that the highest-priority frame between select() and send() could have been * replaced with a lower priority one due to TX timeout. But we don't do this check because: * * - It is a highly unlikely scenario. * * - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new * frame can only have higher priority, which doesn't break the logic. * * - If high-priority frames are timing out in the TX queue, there's probably a lot of other * issues to take care of before this one becomes relevant. * * - It takes CPU time. Not just CPU time, but critical section time, which is expensive. */ CriticalSectionLocker lock; /* * Seeking for an empty slot */ uavcan::uint8_t index; if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { return false; //we don't have free space } index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); // Copy Frame to RAM // Calculate Tx element address uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); //Setup Frame ID if (frame.isExtended()) { buffer[0] = (fdcan::IDE | frame.id); } else { buffer[0] = (frame.id << 18); } if (frame.isRemoteTransmissionRequest()) { buffer[0] |= fdcan::RTR; } //Write Data Length Code, and Message Marker buffer[1] = frame.dlc << 16 | index << 24; // Write Frame to the message RAM buffer[2] = (uavcan::uint32_t(frame.data[3]) << 24) | (uavcan::uint32_t(frame.data[2]) << 16) | (uavcan::uint32_t(frame.data[1]) << 8) | (uavcan::uint32_t(frame.data[0]) << 0); buffer[3] = (uavcan::uint32_t(frame.data[7]) << 24) | (uavcan::uint32_t(frame.data[6]) << 16) | (uavcan::uint32_t(frame.data[5]) << 8) | (uavcan::uint32_t(frame.data[4]) << 0); //Set Add Request can_->TXBAR = (1 << index); //Registering the pending transmission so we can track its deadline and loopback it as needed pending_tx_[index].deadline = tx_deadline; pending_tx_[index].frame = frame; pending_tx_[index].loopback = (flags & uavcan::CanIOFlagLoopback) != 0; pending_tx_[index].abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0; pending_tx_[index].index = index; return 1; } uavcan::int16_t CanIface::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) { out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps uavcan::uint64_t utc_usec = 0; { CriticalSectionLocker lock; if (rx_queue_.getLength() == 0) { return 0; } rx_queue_.pop(out_frame, utc_usec, out_flags); } out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec); return 1; } uavcan::int16_t CanIface::configureFilters(const uavcan::CanFilterConfig* filter_configs, uavcan::uint16_t num_configs) { uint32_t num_extid = 0, num_stdid = 0; uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE; uint32_t* filter_ptr; //count number of frames of each type for (uint8_t i = 0; i < num_configs; i++) { const uavcan::CanFilterConfig* const cfg = filter_configs + i; if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) { num_extid++; } else { num_stdid++; } } CriticalSectionLocker lock; can_->CCCR |= FDCAN_CCCR_INIT; // Request init while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {} can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change //Allocate Message RAM for Standard ID Filter List if (num_stdid == 0) { //No Frame with Standard ID is to be accepted can_->GFC |= 0x2; //Reject All Standard ID Frames } else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) { can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16); MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_stdid; total_available_list_size -= num_stdid; can_->GFC |= (0x3U << 4); //Reject non matching Standard frames } else { //The List is too big, return fail can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode return -ErrFilterNumConfigs; } if (num_stdid) { num_stdid = 0; //reset list count filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA; //Run through the filter list and setup standard id filter list for (uint8_t i = 0; i < num_configs; i++) { uint32_t id = 0; uint32_t mask = 0; const uavcan::CanFilterConfig* const cfg = filter_configs + i; if (!((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF))) { id = (cfg->id & uavcan::CanFrame::MaskStdID); // Regular std frames, nothing fancy. mask = (cfg->mask & 0x7F); filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter 0x1U << 27 | //Store in Rx FIFO0 if filter matches id << 16 | mask; num_stdid++; } } } //Allocate Message RAM for Extended ID Filter List if (num_extid == 0) { //No Frame with Extended ID is to be accepted can_->GFC |= 0x1; //Reject All Extended ID Frames } else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) { can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16); MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_extid*2; can_->GFC = (0x3U << 2); // Reject non matching Extended frames } else { //The List is too big, return fail can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode return -ErrFilterNumConfigs; } if (num_extid) { num_extid = 0; filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA; //Run through the filter list and setup extended id filter list for (uint8_t i = 0; i < num_configs; i++) { uint32_t id = 0; uint32_t mask = 0; const uavcan::CanFilterConfig* const cfg = filter_configs + i; if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) { id = (cfg->id & uavcan::CanFrame::MaskExtID); mask = (cfg->mask & uavcan::CanFrame::MaskExtID); filter_ptr[num_extid*2] = 0x1U << 29 | id; // Classic CAN Filter filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; //Store in Rx FIFO0 if filter matches num_extid++; } } } MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { //We are overflowing the limit of Allocated Message RAM AP_HAL::panic("CANFDIface: Message RAM Overflow!"); } can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode return 0; } uavcan::uint16_t CanIface::getNumFilters() const { return MAX_FILTER_LIST_SIZE; } int CanIface::init(const uavcan::uint32_t bitrate, const OperatingMode mode) { // Setup FDCAN for configuration mode and disable all interrupts { CriticalSectionLocker lock; can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) {} //Wait for wake up ack can_->CCCR |= FDCAN_CCCR_INIT; // Request init while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {} can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change can_->IE = 0; // Disable interrupts while initialization is in progress } /* * Object state - interrupts are disabled, so it's safe to modify it now */ rx_queue_.reset(); error_cnt_ = 0; served_aborts_cnt_ = 0; uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem()); peak_tx_mailbox_index_ = 0; had_activity_ = false; /* * CAN timings for this bitrate */ Timings timings; const int timings_res = computeTimings(bitrate, timings); if (timings_res < 0) { can_->CCCR &= ~FDCAN_CCCR_INIT; return timings_res; } UAVCAN_STM32_LOG("Timings: presc=%u sjw=%u bs1=%u bs2=%u", unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); //setup timing register //TODO: Do timing calculations for FDCAN can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) | (timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) | (timings.bs2 << FDCAN_NBTP_TSEG2_Pos) | (timings.prescaler << FDCAN_NBTP_NBRP_Pos)); //RX Config can_->RXESC = 0; //Set for 8Byte Frames //Setup Message RAM setupMessageRam(); //Clear all Interrupts can_->IR = 0x3FFFFFFF; //Enable Interrupts can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable FDCAN_IE_RF0NE | // RX FIFO 0 new message FDCAN_IE_RF0FE | // Rx FIFO 1 FIFO Full FDCAN_IE_RF1NE | // RX FIFO 1 new message FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full can_->ILS = FDCAN_ILS_TCL; //Set Line 1 for Transmit Complete Event Interrupt can_->TXBTIE = 0xFFFFFFFF; can_->ILE = 0x3; //Leave Init can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode return 0; } void CanIface::setupMessageRam() { uint32_t num_elements = 0; // Rx FIFO 0 start address and element count num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U); if (num_elements) { can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16); MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; } // Tx FIFO/queue start address and element count num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U); if (num_elements) { can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24); can_->TXBC |= 1U << 30; //Set Queue mode MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; } MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { //We are overflowing the limit of Allocated Message RAM AP_HAL::panic("CANFDIface: Message RAM Overflow!"); return; } } void CanIface::handleTxCompleteInterrupt(const uavcan::uint64_t utc_usec) { for (uint8_t i = 0; i < NumTxMailboxes; i++) { if ((can_->TXBTO & (1UL << i))) { if (pending_tx_[i].loopback && had_activity_) { rx_queue_.push(pending_tx_[i].frame, utc_usec, uavcan::CanIOFlagLoopback); } } } } bool CanIface::readRxFIFO(uavcan::uint8_t fifo_index) { UAVCAN_ASSERT(fifo_index < 2); uint32_t *frame_ptr; uint32_t index; uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); if (fifo_index == 0) { //Check if RAM allocated to RX FIFO if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) { UAVCAN_ASSERT(0); return false; } //Register Message Lost as a hardware error if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) { error_cnt_++; } if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) { return false; //No More messages in FIFO } else { index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8); frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); } } else if (fifo_index == 1) { //Check if RAM allocated to RX FIFO if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) { UAVCAN_ASSERT(0); return false; } //Register Message Lost as a hardware error if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) { error_cnt_++; } if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) { return false; } else { index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8); frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); } } else { return false; } // Read the frame contents uavcan::CanFrame frame; uint32_t id = frame_ptr[0]; if ((id & fdcan::IDE) == 0) { //Standard ID frame.id = ((id & fdcan::STID_MASK) >> 18) & uavcan::CanFrame::MaskStdID; } else { //Extended ID frame.id = (id & fdcan::EXID_MASK) & uavcan::CanFrame::MaskExtID; frame.id |= uavcan::CanFrame::FlagEFF; } if ((id & fdcan::RTR) != 0) { frame.id |= uavcan::CanFrame::FlagRTR; } frame.dlc = (frame_ptr[1] & fdcan::DLC_MASK) >> 16; uint8_t *data = (uint8_t*)&frame_ptr[2]; //We only handle Data Length of 8 Bytes for now for (uint8_t i = 0; i < 8; i++) { frame.data[i] = data[i]; } //Acknowledge the FIFO entry we just read if (fifo_index == 0) { can_->RXF0A = index; } else if (fifo_index == 1) { can_->RXF1A = index; } /* * Store with timeout into the FIFO buffer and signal update event */ rx_queue_.push(frame, utc_usec, 0); #if !HAL_MINIMIZE_FEATURES _slcan_router.route_frame_to_slcan(this, frame, utc_usec); #endif return true; } void CanIface::handleRxInterrupt(uavcan::uint8_t fifo_index) { while (readRxFIFO(fifo_index)) { had_activity_ = true; } update_event_.signalFromInterrupt(); } void CanIface::pollErrorFlagsFromISR() { const uavcan::uint8_t cel = can_->ECR >> 16; if (cel != 0) { for (int i = 0; i < NumTxMailboxes; i++) { if (!pending_tx_[i].abort_on_error) { continue; } if (((1 << pending_tx_[i].index) & can_->TXBRP)) { can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission error_cnt_++; served_aborts_cnt_++; } } } } void CanIface::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time) { CriticalSectionLocker lock; for (int i = 0; i < NumTxMailboxes; i++) { if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) { can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission error_cnt_++; } } } bool CanIface::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const { //Check if Tx FIFO is allocated if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) { return false; } if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { return false; //we don't have free space } return true; } bool CanIface::isRxBufferEmpty() const { CriticalSectionLocker lock; return rx_queue_.getLength() == 0; } uavcan::uint64_t CanIface::getErrorCount() const { CriticalSectionLocker lock; return error_cnt_ + rx_queue_.getOverflowCount(); } unsigned CanIface::getRxQueueLength() const { CriticalSectionLocker lock; return rx_queue_.getLength(); } bool CanIface::hadActivity() { CriticalSectionLocker lock; const bool ret = had_activity_; had_activity_ = false; return ret; } /* * CanDriver */ uavcan::CanSelectMasks CanDriver::makeSelectMasks(const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces]) const { uavcan::CanSelectMasks msk; for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { CanIface* iface = ifaces[if_int_to_gl_index_[i]]; msk.read |= (iface->isRxBufferEmpty() ? 0 : 1) << i; if (pending_tx[i] != UAVCAN_NULLPTR) { msk.write |= (iface->canAcceptNewTxFrame(*pending_tx[i]) ? 1 : 0) << i; } } return msk; } bool CanDriver::hasReadableInterfaces() const { for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { if (!ifaces[if_int_to_gl_index_[i]]->isRxBufferEmpty()) { return true; } } return false; } uavcan::int16_t CanDriver::select(uavcan::CanSelectMasks& inout_masks, const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces], const uavcan::MonotonicTime blocking_deadline) { const uavcan::CanSelectMasks in_masks = inout_masks; const uavcan::MonotonicTime time = clock::getMonotonic(); for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { CanIface* iface = ifaces[if_int_to_gl_index_[i]]; iface->discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots { CriticalSectionLocker cs_locker; iface->pollErrorFlagsFromISR(); } } inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events if ((inout_masks.read & in_masks.read) != 0 || (inout_masks.write & in_masks.write) != 0) { return 1; } (void)update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set return 1; // Return value doesn't matter as long as it is non-negative } void CanDriver::initOnce() { { CriticalSectionLocker lock; RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST; RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST; RCC->APB1HENR |= RCC_APB1HENR_FDCANEN; } /* * IRQ */ { CriticalSectionLocker lock; nvicEnableVector(FDCAN1_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(FDCAN1_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); # if UAVCAN_STM32_NUM_IFACES > 1 nvicEnableVector(FDCAN2_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(FDCAN2_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); # endif } } int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode) { int res = 0; UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast(bitrate), static_cast(mode)); static bool initialized_once = false; if (!initialized_once) { initialized_once = true; UAVCAN_STM32_LOG("First initialization"); initOnce(); } /* * CAN1 */ UAVCAN_STM32_LOG("Initing iface 0..."); ifaces[0] = &if0_; // This link must be initialized first, res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; if (res < 0) { // a typical race condition. UAVCAN_STM32_LOG("Iface 0 init failed %i", res); ifaces[0] = UAVCAN_NULLPTR; goto fail; } /* * CAN2 */ #if UAVCAN_STM32_NUM_IFACES > 1 UAVCAN_STM32_LOG("Initing iface 1..."); ifaces[1] = &if1_; // Same thing here. res = if1_.init(bitrate, mode); if (res < 0) { UAVCAN_STM32_LOG("Iface 1 init failed %i", res); ifaces[1] = UAVCAN_NULLPTR; goto fail; } #endif UAVCAN_STM32_LOG("CAN drv init OK"); UAVCAN_ASSERT(res >= 0); return res; fail: UAVCAN_STM32_LOG("CAN drv init failed %i", res); UAVCAN_ASSERT(res < 0); return res; } bool CanDriver::clock_init_ = false; void CanDriver::initOnce(uavcan::uint8_t can_number, bool enable_irqs) { //Only do it once //Doing it second time will reset the previously initialised bus if (!clock_init_) { CriticalSectionLocker lock; RCC->APB1HENR |= RCC_APB1HENR_FDCANEN; RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST; RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST; clock_init_ = true; } if (!enable_irqs) { return; } /* * IRQ */ { CriticalSectionLocker lock; if (can_number == 0) { nvicEnableVector(FDCAN1_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(FDCAN1_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); } # if UAVCAN_STM32_NUM_IFACES > 1 else if (can_number == 1) { nvicEnableVector(FDCAN2_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(FDCAN2_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); } # endif } } int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode, uavcan::uint8_t can_number) { int res = 0; UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast(bitrate), static_cast(mode)); if (can_number > UAVCAN_STM32_NUM_IFACES) { res = -1; goto fail; } static bool initialized_once[UAVCAN_STM32_NUM_IFACES] = {false}; if (!initialized_once[can_number]) { initialized_once[can_number] = true; initialized_by_me_[can_number] = true; if (can_number == 1 && !initialized_once[0]) { UAVCAN_STM32_LOG("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it"); UAVCAN_STM32_LOG("Enabling CAN iface 0"); initOnce(0, false); UAVCAN_STM32_LOG("Initing iface 0..."); res = if0_.init(bitrate, mode); if (res < 0) { UAVCAN_STM32_LOG("Iface 0 init failed %i", res); goto fail; } } UAVCAN_STM32_LOG("Enabling CAN iface %d", can_number); initOnce(can_number, true); } else if (!initialized_by_me_[can_number]) { UAVCAN_STM32_LOG("CAN iface %d initialized in another CANDriver!", can_number); res = -2; goto fail; } if (can_number == 0) { /* * CAN1 */ UAVCAN_STM32_LOG("Initing iface 0..."); ifaces[0] = &if0_; // This link must be initialized first, res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; if (res < 0) { // a typical race condition. UAVCAN_STM32_LOG("Iface 0 init failed %i", res); ifaces[0] = UAVCAN_NULLPTR; goto fail; } } else if (can_number == 1) { /* * CAN2 */ #if UAVCAN_STM32_NUM_IFACES > 1 UAVCAN_STM32_LOG("Initing iface 1..."); ifaces[1] = &if1_; // Same thing here. res = if1_.init(bitrate, mode); if (res < 0) { UAVCAN_STM32_LOG("Iface 1 init failed %i", res); ifaces[1] = UAVCAN_NULLPTR; goto fail; } #endif } if_int_to_gl_index_[num_ifaces_++] = can_number; UAVCAN_STM32_LOG("CAN drv init OK"); UAVCAN_ASSERT(res >= 0); return res; fail: UAVCAN_STM32_LOG("CAN drv init failed %i", res); UAVCAN_ASSERT(res < 0); return res; } CanIface* CanDriver::getIface(uavcan::uint8_t iface_index) { if (iface_index < num_ifaces_) { return ifaces[if_int_to_gl_index_[iface_index]]; } return UAVCAN_NULLPTR; } bool CanDriver::hadActivity() { for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { if (ifaces[if_int_to_gl_index_[i]]->hadActivity()) { return true; } } return false; } } // namespace uavcan_stm32 /* * Interrupt handlers */ extern "C" { UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT0_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT0_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleInterrupt(0, 0); UAVCAN_STM32_IRQ_EPILOGUE(); } UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT1_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT1_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleInterrupt(0, 1); UAVCAN_STM32_IRQ_EPILOGUE(); } # if UAVCAN_STM32_NUM_IFACES > 1 UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT0_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT0_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleInterrupt(1, 0); UAVCAN_STM32_IRQ_EPILOGUE(); } UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT1_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT1_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleInterrupt(1, 1); UAVCAN_STM32_IRQ_EPILOGUE(); } # endif } // extern "C" #endif //defined(STM32H7XX) #endif //HAL_WITH_UAVCAN