/* * Copyright (C) 2016 Intel Corporation. All rights reserved. * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "AP_Compass_BMM150.h" #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include #include #include #define CHIP_ID_REG 0x40 #define CHIP_ID_VAL 0x32 #define POWER_AND_OPERATIONS_REG 0x4B #define POWER_CONTROL_VAL (1 << 0) #define SOFT_RESET (1 << 7 | 1 << 1) #define OP_MODE_SELF_TEST_ODR_REG 0x4C #define NORMAL_MODE (0 << 1) #define ODR_30HZ (1 << 3 | 1 << 4 | 1 << 5) #define ODR_20HZ (1 << 3 | 0 << 4 | 1 << 5) #define DATA_X_LSB_REG 0x42 #define REPETITIONS_XY_REG 0x51 #define REPETITIONS_Z_REG 0X52 /* Trim registers */ #define DIG_X1_REG 0x5D #define DIG_Y1_REG 0x5E #define DIG_Z4_LSB_REG 0x62 #define DIG_Z4_MSB_REG 0x63 #define DIG_X2_REG 0x64 #define DIG_Y2_REG 0x65 #define DIG_Z2_LSB_REG 0x68 #define DIG_Z2_MSB_REG 0x69 #define DIG_Z1_LSB_REG 0x6A #define DIG_Z1_MSB_REG 0x6B #define DIG_XYZ1_LSB_REG 0x6C #define DIG_XYZ1_MSB_REG 0x6D #define DIG_Z3_LSB_REG 0x6E #define DIG_Z3_MSB_REG 0x6F #define DIG_XY2_REG 0x70 #define DIG_XY1_REG 0x71 #define MEASURE_TIME_USEC 10000 extern const AP_HAL::HAL &hal; AP_Compass_Backend *AP_Compass_BMM150::probe(Compass &compass, AP_HAL::OwnPtr dev) { AP_Compass_BMM150 *sensor = new AP_Compass_BMM150(compass, std::move(dev)); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_BMM150::AP_Compass_BMM150(Compass &compass, AP_HAL::OwnPtr dev) : AP_Compass_Backend(compass) , _dev(std::move(dev)) { } bool AP_Compass_BMM150::_load_trim_values() { struct { int8_t dig_x1; int8_t dig_y1; uint8_t rsv[3]; le16_t dig_z4; int8_t dig_x2; int8_t dig_y2; uint8_t rsv2[2]; le16_t dig_z2; le16_t dig_z1; le16_t dig_xyz1; le16_t dig_z3; int8_t dig_xy2; uint8_t dig_xy1; } PACKED trim_registers; if (!_dev->read_registers(DIG_X1_REG, (uint8_t *)&trim_registers, sizeof(trim_registers))) { return false; } _dig.x1 = trim_registers.dig_x1; _dig.x2 = trim_registers.dig_x2; _dig.xy1 = trim_registers.dig_xy1; _dig.xy2 = trim_registers.dig_xy2; _dig.xyz1 = le16toh(trim_registers.dig_xyz1); _dig.y1 = trim_registers.dig_y1; _dig.y2 = trim_registers.dig_y2; _dig.z1 = le16toh(trim_registers.dig_z1); _dig.z2 = le16toh(trim_registers.dig_z2); _dig.z3 = le16toh(trim_registers.dig_z3); _dig.z4 = le16toh(trim_registers.dig_z4); return true; } bool AP_Compass_BMM150::init() { uint8_t val = 0; bool ret; _accum_sem = hal.util->new_semaphore(); if (!_accum_sem) { hal.console->printf("BMM150: Unable to create semaphore\n"); return false; } if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.console->printf("BMM150: Unable to get bus semaphore\n"); return false; } /* Do a soft reset */ ret = _dev->write_register(POWER_AND_OPERATIONS_REG, SOFT_RESET); if (!ret) { goto bus_error; } hal.scheduler->delay(2); /* Change power state from suspend mode to sleep mode */ ret = _dev->write_register(POWER_AND_OPERATIONS_REG, POWER_CONTROL_VAL); if (!ret) { goto bus_error; } hal.scheduler->delay(2); ret = _dev->read_registers(CHIP_ID_REG, &val, 1); if (!ret) { goto bus_error; } if (val != CHIP_ID_VAL) { hal.console->printf("BMM150: Wrong id\n"); goto fail; } ret = _load_trim_values(); if (!ret) { goto bus_error; } /* * Recommended preset for high accuracy: * - Rep X/Y = 47 * - Rep Z = 83 * - ODR = 20 * But we are going to use 30Hz of ODR */ ret = _dev->write_register(REPETITIONS_XY_REG, (47 - 1) / 2); if (!ret) { goto bus_error; } ret = _dev->write_register(REPETITIONS_Z_REG, 83 - 1); if (!ret) { goto bus_error; } /* Change operation mode from sleep to normal and set ODR */ ret = _dev->write_register(OP_MODE_SELF_TEST_ODR_REG, NORMAL_MODE | ODR_30HZ); if (!ret) { goto bus_error; } _dev->get_semaphore()->give(); /* register the compass instance in the frontend */ _compass_instance = register_compass(); set_dev_id(_compass_instance, AP_COMPASS_TYPE_BMM150); _dev->register_periodic_callback(MEASURE_TIME_USEC, FUNCTOR_BIND_MEMBER(&AP_Compass_BMM150::_update, bool)); return true; bus_error: hal.console->printf("BMM150: Bus communication error\n"); fail: _dev->get_semaphore()->give(); return false; } /* * Compensation algorithm got from https://github.com/BoschSensortec/BMM050_driver * this is not explained in datasheet. */ int16_t AP_Compass_BMM150::_compensate_xy(int16_t xy, uint32_t rhall, int32_t txy1, int32_t txy2) { int32_t inter = ((int32_t)_dig.xyz1) << 14; inter /= rhall; inter -= 0x4000; int32_t val = _dig.xy2 * ((inter * inter) >> 7); val += (inter * (((uint32_t)_dig.xy1) << 7)); val >>= 9; val += 0x100000; val *= (txy2 + 0xA0); val >>= 12; val *= xy; val >>= 13; val += (txy1 << 3); return val; } int16_t AP_Compass_BMM150::_compensate_z(int16_t z, uint32_t rhall) { int32_t dividend = ((int32_t)(z - _dig.z4)) << 15; dividend -= (_dig.z3 * (rhall - _dig.xyz1)) >> 2; int32_t divisor = ((int32_t)_dig.z1) * (rhall << 1); divisor += 0x8000; divisor >>= 16; divisor += _dig.z2; return constrain_int32(dividend / divisor, -0x8000, 0x8000); } bool AP_Compass_BMM150::_update() { const uint32_t time_usec = AP_HAL::micros(); if (time_usec - _last_update_timestamp < MEASURE_TIME_USEC) { return true; } le16_t data[4]; bool ret = _dev->read_registers(DATA_X_LSB_REG, (uint8_t *) &data, sizeof(data)); /* Checking data ready status */ if (!ret || !(data[3] & 0x1)) { return true; } const uint16_t rhall = le16toh(data[3] >> 2); Vector3f raw_field = Vector3f{ (float) _compensate_xy(((int16_t)le16toh(data[0])) >> 3, rhall, _dig.x1, _dig.x2), (float) _compensate_xy(((int16_t)le16toh(data[1])) >> 3, rhall, _dig.y1, _dig.y2), (float) _compensate_z(((int16_t)le16toh(data[2])) >> 1, rhall)}; /* apply sensitivity scale 16 LSB/uT */ raw_field /= 16; /* convert uT to milligauss */ raw_field *= 10; /* rotate raw_field from sensor frame to body frame */ rotate_field(raw_field, _compass_instance); /* publish raw_field (uncorrected point sample) for calibration use */ publish_raw_field(raw_field, time_usec, _compass_instance); /* correct raw_field for known errors */ correct_field(raw_field, _compass_instance); if (!_accum_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return true; } _mag_accum += raw_field; _accum_count++; if (_accum_count == 10) { _mag_accum /= 2; _accum_count = 5; } _last_update_timestamp = time_usec; _accum_sem->give(); return true; } void AP_Compass_BMM150::read() { if (!_accum_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return; } if (_accum_count == 0) { _accum_sem->give(); return; } Vector3f field(_mag_accum); field /= _accum_count; _mag_accum.zero(); _accum_count = 0; _accum_sem->give(); publish_filtered_field(field, _compass_instance); } #endif