/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. * * Code by Andy Piper */ #include <AP_Math/AP_Math.h> #include "AP_HAL.h" #include "DSP.h" #ifndef HAL_NO_UARTDRIVER #include <GCS_MAVLink/GCS.h> #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include <assert.h> #endif #if HAL_WITH_DSP using namespace AP_HAL; extern const AP_HAL::HAL &hal; #define SQRT_2_3 0.816496580927726f #define SQRT_6 2.449489742783178f DSP::FFTWindowState::FFTWindowState(uint16_t window_size, uint16_t sample_rate, uint8_t sliding_window_size) : _bin_resolution((float)sample_rate / (float)window_size), _bin_count(window_size / 2), _num_stored_freqs(window_size / 2 + 1), _window_size(window_size), _sliding_window_size(sliding_window_size), _current_slice(0) { // includes DC ad Nyquist components and needs to be large enough for intermediate steps _freq_bins = (float*)hal.util->malloc_type(sizeof(float) * _window_size, DSP_MEM_REGION); _derivative_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); _hanning_window = (float*)hal.util->malloc_type(sizeof(float) * _window_size, DSP_MEM_REGION); // allocate workspace, including Nyquist component _rfft_data = (float*)hal.util->malloc_type(sizeof(float) * (_window_size + 2), DSP_MEM_REGION); // sliding window of frequency bin frames if (_sliding_window_size > 0) { _sliding_window = (float*)hal.util->malloc_type(sizeof(float) * _num_stored_freqs * _sliding_window_size, DSP_MEM_REGION); _avg_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); // we can still fallback to non-averaging if there is not enough memory if (_avg_freq_bins == nullptr) { hal.util->free_type(_sliding_window, sizeof(float) * _num_stored_freqs * _sliding_window_size, DSP_MEM_REGION); _sliding_window = nullptr; } } if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { free_data_structures(); return; } // create the Hanning window // https://holometer.fnal.gov/GH_FFT.pdf - equation 19 for (uint16_t i = 0; i < window_size; i++) { _hanning_window[i] = (0.5f - 0.5f * cosf(2.0f * M_PI * i / ((float)window_size - 1))); _window_scale += _hanning_window[i]; } // Calculate the inverse of the Effective Noise Bandwidth - equation 24 _window_scale = 2.0f / sq(_window_scale); } DSP::FFTWindowState::~FFTWindowState() { free_data_structures(); } void DSP::FFTWindowState::free_data_structures() { hal.util->free_type(_freq_bins, sizeof(float) * _window_size * _sliding_window_size, DSP_MEM_REGION); _freq_bins = nullptr; hal.util->free_type(_derivative_freq_bins, sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); _derivative_freq_bins = nullptr; hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION); _hanning_window = nullptr; hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION); _rfft_data = nullptr; hal.util->free_type(_avg_freq_bins, sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); _avg_freq_bins = nullptr; hal.util->free_type(_sliding_window, sizeof(float) * _num_stored_freqs * _sliding_window_size, DSP_MEM_REGION); _sliding_window = nullptr; } // step 3: find the magnitudes of the complex data void DSP::step_cmplx_mag(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) { // fft->_freq_bins is populated with the complex magnitude values of the fft data // find the maximum power in the range we are interested in // in order to see a peak in the last bin we need to allow all the way up to the nyquist const uint16_t smoothwidth = 1; float* freq_data = fft->_freq_bins; if (fft->_sliding_window != nullptr) { update_average_from_sliding_window(fft); freq_data = fft->_avg_freq_bins; } else { // scale the power to account for the input window vector_scale_float(fft->_freq_bins, fft->_window_scale, fft->_freq_bins, fft->_bin_count); } uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1; // find the three highest peaks using a zero crossing algorithm uint16_t peaks[MAX_TRACKED_PEAKS] {}; memset(fft->_peak_data, 0, sizeof(fft->_peak_data)); uint16_t numpeaks = find_peaks(&freq_data[start_bin], bin_range, fft->_derivative_freq_bins, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2); //hal.console->printf("found %d peaks\n", numpeaks); for (uint16_t i = 0; i < MAX_TRACKED_PEAKS; i++) { fft->_peak_data[i]._bin = peaks[i] + start_bin; } uint16_t top = 0, bottom = 0; fft->_peak_data[CENTER]._noise_width_hz = find_noise_width(freq_data, start_bin, end_bin, fft->_peak_data[CENTER]._bin, noise_att_cutoff, fft->_bin_resolution, top, bottom); if (numpeaks > 1) { fft->_peak_data[LOWER_SHOULDER]._noise_width_hz = find_noise_width(freq_data, start_bin, end_bin, fft->_peak_data[LOWER_SHOULDER]._bin, noise_att_cutoff, fft->_bin_resolution, top, bottom); } if (numpeaks > 2) { fft->_peak_data[UPPER_SHOULDER]._noise_width_hz = find_noise_width(freq_data, start_bin, end_bin, fft->_peak_data[UPPER_SHOULDER]._bin, noise_att_cutoff, fft->_bin_resolution, top, bottom); } // average the FFT data if (fft->_averaging) { vector_add_float(fft->_avg_freq_bins, fft->_freq_bins, fft->_avg_freq_bins, fft->_bin_count); fft->_averaging_samples++; } } // calculate the noise width of a peak based on the input parameters // freq_bins can be scaled or unscaled for power float DSP::find_noise_width(float* freq_bins, uint16_t start_bin, uint16_t end_bin, uint16_t max_energy_bin, float cutoff, float bin_resolution, uint16_t& peak_top, uint16_t& peak_bottom) const { // max_energy_bin is guaranteed to be between start_bin and end_bin peak_top = end_bin; peak_bottom = start_bin; // calculate the width of the peak float noise_width_hz = 1; // -attenuation/2 dB point above the center bin if (max_energy_bin < end_bin) { for (uint16_t b = max_energy_bin + 1; b <= end_bin; b++) { if (freq_bins[b] < freq_bins[max_energy_bin] * cutoff) { // we assume that the 3dB point is in the middle of the final shoulder bin noise_width_hz += (b - max_energy_bin - 0.5f); peak_top = b; break; } } } // -attenuation/2 dB point below the center bin if (max_energy_bin > start_bin) { for (uint16_t b = max_energy_bin - 1; b >= start_bin; b--) { if (freq_bins[b] < freq_bins[max_energy_bin] * cutoff) { // we assume that the 3dB point is in the middle of the final shoulder bin noise_width_hz += (max_energy_bin - b - 0.5f); peak_bottom = b; break; } } } noise_width_hz *= bin_resolution; return noise_width_hz; } // step 4: find the bin with the highest energy and interpolate the required frequency uint16_t DSP::step_calc_frequencies(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin) { fft->_peak_data[CENTER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[CENTER]._bin, end_bin); fft->_peak_data[UPPER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[UPPER_SHOULDER]._bin, end_bin); fft->_peak_data[LOWER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[LOWER_SHOULDER]._bin, end_bin); return fft->_peak_data[CENTER]._bin; } void DSP::update_average_from_sliding_window(FFTWindowState* fft) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #define ASSERT_MAX(v) assert((v)<(fft->_num_stored_freqs * fft->_sliding_window_size)) #else #define ASSERT_MAX(v) #endif // copy and scale the new slice const uint16_t slice_index = fft->_current_slice * fft->_num_stored_freqs; ASSERT_MAX(slice_index); float* slice = &fft->_sliding_window[slice_index]; const uint16_t old_slice_index = ((fft->_current_slice + 1) % fft->_sliding_window_size) * fft->_num_stored_freqs; ASSERT_MAX(old_slice_index); float* old_slice = &fft->_sliding_window[old_slice_index]; const float inv_ssize = 1.0f / fft->_sliding_window_size; for (uint16_t i = 0; i < fft->_bin_count; i++) { slice[i] = fft->_freq_bins[i] * fft->_window_scale * inv_ssize; fft->_avg_freq_bins[i] = fft->_avg_freq_bins[i] + slice[i] - old_slice[i]; } // advance the current slice fft->_current_slice = (fft->_current_slice + 1) % fft->_sliding_window_size; } // calculate a single frequency uint16_t DSP::calc_frequency(FFTWindowState* fft, uint16_t start_bin, uint16_t peak_bin, uint16_t end_bin) { if (peak_bin == 0 || is_zero(fft->get_freq_bin(peak_bin))) { return start_bin * fft->_bin_resolution; } peak_bin = constrain_int16(peak_bin, start_bin, end_bin); // It turns out that Jain is pretty good and works with only magnitudes, but Candan is significantly better // if you have access to the complex values and Quinn is a little better still. Quinn is computationally // more expensive, but compared to the overall FFT cost seems worth it. if (fft->_sliding_window != nullptr) { return (peak_bin + calculate_jains_estimator(fft, fft->_avg_freq_bins, peak_bin)) * fft->_bin_resolution; } else { return (peak_bin + calculate_quinns_second_estimator(fft, fft->_rfft_data, peak_bin)) * fft->_bin_resolution; } } // Interpolate center frequency using https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/ float DSP::calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k_max) const { if (k_max <= 1 || k_max >= fft->_bin_count) { return 0.0f; } const uint16_t k_m1 = (k_max - 1) * 2; const uint16_t k_p1 = (k_max + 1) * 2; const uint16_t k = k_max * 2; const float divider = complex_fft[k] * complex_fft[k] + complex_fft[k+1] * complex_fft[k+1]; const float ap = (complex_fft[k_p1] * complex_fft[k] + complex_fft[k_p1 + 1] * complex_fft[k+1]) / divider; const float am = (complex_fft[k_m1] * complex_fft[k] + complex_fft[k_m1 + 1] * complex_fft[k + 1]) / divider; // sanity check if (fabsf(1.0f - ap) < 0.01f || fabsf(1.0f - am) < 0.01f) { return 0.0f; } const float dp = -ap / (1.0f - ap); const float dm = am / (1.0f - am); float d = (dp + dm) * 0.5f + tau(dp * dp) - tau(dm * dm); // -0.5 < d < 0.5 which is the fraction of the sample spacing about the center element return constrain_float(d, -0.5f, 0.5f); } static const float TAU_FACTOR = SQRT_6 / 24.0f; // Helper function used for Quinn's frequency estimation float DSP::tau(const float x) const { float p1 = logf(3.0f * sq(x) + 6.0f * x + 1.0f); float part1 = x + 1.0f - SQRT_2_3; float part2 = x + 1.0f + SQRT_2_3; float p2 = logf(part1 / part2); return (0.25f * p1 - TAU_FACTOR * p2); } // from https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/ // Works on magnitudes only, which is useful when using averaged data float DSP::calculate_jains_estimator(const FFTWindowState* fft, const float* real_fft, uint16_t k_max) { if (k_max <= 1 || k_max >= fft->_bin_count) { return 0.0f; } float y1 = real_fft[k_max-1]; float y2 = real_fft[k_max]; float y3 = real_fft[k_max+1]; float d = 0.0f; if (y1 > y3) { float a = y2 / y1; d = a / (1 + a) - 1; } else { float a = y3 / y2; d = a / (1 + a); } return constrain_float(d, -0.5f, 0.5f); } // initialize averaging FFT windows as they are calculated bool DSP::fft_init_average(FFTWindowState* fft) { if (fft->_avg_freq_bins == nullptr) { fft->_avg_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * fft->_num_stored_freqs, DSP_MEM_REGION); if (fft->_avg_freq_bins == nullptr) { return false; } } return true; } // start averaging FFT windows as they are calculated bool DSP::fft_start_average(FFTWindowState* fft) { if (fft->_averaging) { return false; } if (!fft_init_average(fft)) { return false; } fft->_averaging_samples = 0; fft->_averaging = true; return true; } // start averaging FFT windows as they are calculated uint16_t DSP::fft_stop_average(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float* freqs) { // ensure the window has been allocated even if we do nothing else if (!fft_init_average(fft)) { return 0; } if (!fft->_averaging) { return 0; } fft->_averaging = false; // scale by the number of samples vector_scale_float(fft->_avg_freq_bins, fft->_averaging_samples, fft->_avg_freq_bins, fft->_bin_count); const uint16_t smoothwidth = 1; uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1; // find the three highest peaks using a zero crossing algorithm // allocate the scratch space locally as we are in a different thread to the regular FFT float* scratch_space = (float*)hal.util->malloc_type(sizeof(float) * fft->_num_stored_freqs, DSP_MEM_REGION); if (scratch_space == nullptr) { return false; } uint16_t peaks[MAX_TRACKED_PEAKS] {}; uint16_t numpeaks = find_peaks(&fft->_avg_freq_bins[start_bin], bin_range, scratch_space, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2); hal.util->free_type(scratch_space, sizeof(float) * fft->_num_stored_freqs, DSP_MEM_REGION); numpeaks = MIN(numpeaks, uint16_t(MAX_TRACKED_PEAKS)); // now try and find the lowest harmonic for (uint16_t i = 0; i < numpeaks; i++) { const uint16_t bin = peaks[i] + start_bin; float d = calculate_jains_estimator(fft, fft->_avg_freq_bins, bin); freqs[i] = (bin + d) * fft->_bin_resolution; } fft->_averaging_samples = 0; return numpeaks; } // find all the peaks in the fft window using https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm // in general peakgrup > 2 is only good for very broad noisy peaks, <= 2 better for spikey peaks, although 1 will miss // a true spike 50% of the time uint16_t DSP::find_peaks(const float* input, uint16_t length, float* d, uint16_t* peaks, uint16_t peaklen, float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const { if (smoothwidth > 1) { derivative(input, d, length); fastsmooth(d, length, smoothwidth); } else { derivative(input, d, length); } uint16_t n = ((peakgroup + 1) >> 1) + 1; uint16_t halfw = (smoothwidth + 1) >> 1; uint16_t numpeaks = 0; uint16_t peakX = 0; float peakY = 0; uint16_t pindex; uint16_t xx[peakgroup]; float yy[peakgroup]; memset(xx, 0, peakgroup * sizeof(uint16_t)); memset(yy, 0, peakgroup * sizeof(float)); for (uint16_t j = (halfw << 1) - 2; j < length - smoothwidth - 1; j++) { if (d[j] >= 0 && d[j + 1] <= 0 && !is_equal(d[j], d[j + 1])) { // detect zero crossing if ((d[j] - d[j + 1]) > slopeThreshold) { for (uint16_t k = 0; k < peakgroup; k++) { uint16_t groupIndex = j + k - n + 2; groupIndex = constrain_int16(groupIndex, 0, length - 1); xx[k] = groupIndex; yy[k] = input[groupIndex]; } if (peakgroup < 3) { vector_max_float(yy, peakgroup, &peakY, &pindex); } else { peakY = vector_mean_float(yy, peakgroup); pindex = val2index(yy, peakgroup, peakY); } peakX = xx[pindex]; //hal.console->printf("zero %d, gindex %d -> %d, index %d, val %f\n", j, j -n +2, j+peakgroup -1 - n +2, peakX, peakY); // see if we have a valid peak if (isfinite(peakY) && peakY >= ampThreshold) { // record in amplitude order for (int16_t i = 0; i < peaklen; i++) { if (i >= numpeaks) { peaks[i] = peakX; break; } if (peakY > input[peaks[i]]) { for (int16_t a = peaklen - 1; a > i; a--) { peaks[a] = peaks[a - 1]; } peaks[i] = peakX; break; } } numpeaks++; } } } } return numpeaks; } // Returns the index and the value of the element of a vector that is closest to val uint16_t DSP::val2index(const float* vector, uint16_t n, float val) const { float minval = FLT_MAX; uint16_t minidx = 0; for (uint16_t i = 0; i < n; i++) { float dif = fabsf(vector[i] - val); if (dif < minval) { minval = dif; minidx = i; } } return minidx; } // First derivative of vector using 2-point central difference. void DSP::derivative(const float* input, float* output, uint16_t n) const { output[0] = input[1] - input[0]; output[n - 1] = input[n - 1] - input[n - 2]; for (uint16_t i = 1; i < n - 1; i++) { output[i] = (input[i + 1] - input[i - 1]) / 2.0f; } } // smooth a vector in-place void DSP::fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const { float window[smoothwidth]; memset(window, 0, smoothwidth * sizeof(float)); float sumpoints = 0.0f; for (int i = 0; i < smoothwidth; i++) { sumpoints += input[i]; } uint16_t halfw = (smoothwidth + 1) >> 1; for (int i = 0; i < n - smoothwidth; i++) { window[i % smoothwidth] = sumpoints; sumpoints -= input[i]; sumpoints += input[i + smoothwidth]; input[i] = window[(i + smoothwidth - 1) % smoothwidth] / smoothwidth; } uint16_t last = n - smoothwidth + halfw; input[last] = 0.0f; for (int i = last + 1; i < n; i++) { input[last] += input[i]; } input[n - smoothwidth + halfw] /= smoothwidth; for (int i = last + 1; i < n; i++) { input[i] = 0.0f; } } #endif // HAL_WITH_DSP