// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" " reboot reboot to flight mode\n" "\n")); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"reboot", reboot_board}, {"help", main_menu_help}, }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits static void run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(NULL,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void init_ardupilot() { // Console serial port // // The console port buffers are defined to be sufficiently large to support // the MAVLink protocol efficiently // hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE); cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n"), hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM // load_parameters(); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // this must be before BoardConfig.init() so if // BRD_SAFETYENABLE==0 then we don't have safety off yet setup_failsafe_mixing(); #endif BoardConfig.init(); // allow servo set on all channels except first 4 ServoRelayEvents.set_channel_mask(0xFFF0); set_control_channels(); // reset the uartA baud rate after parameter load hal.uartA->begin(map_baudrate(g.serial0_baud)); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // initialise rangefinder init_rangefinder(); // initialise battery monitoring battery.init(); // init the GCS gcs[0].init(hal.uartA); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // we have a 2nd serial port for telemetry gcs[1].setup_uart(hal.uartC, map_baudrate(g.serial1_baud), 128, SERIAL1_BUFSIZE); #if MAVLINK_COMM_NUM_BUFFERS > 2 if (g.serial2_protocol == SERIAL2_FRSKY_DPORT || g.serial2_protocol == SERIAL2_FRSKY_SPORT) { frsky_telemetry.init(hal.uartD, g.serial2_protocol); } else { gcs[2].setup_uart(hal.uartD, map_baudrate(g.serial2_baud), 128, SERIAL2_BUFSIZE); } #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0])); if (!DataFlash.CardInserted()) { gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); g.log_bitmask.set(0); } else if (DataFlash.NeedErase()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); do_erase_logs(); for (uint8_t i=0; iprintln_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); // give AHRS the airspeed sensor ahrs.set_airspeed(&airspeed); // GPS Initialization gps.init(&DataFlash); //mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id mavlink_system.type = MAV_TYPE_FIXED_WING; init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs relay.init(); #if FENCE_TRIGGERED_PIN > 0 hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT); hal.gpio->write(FENCE_TRIGGERED_PIN, 0); #endif /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check, 1000); const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); cliSerial->println_P(msg); if (gcs[1].initialised) { hal.uartC->println_P(msg); } if (num_gcs > 2 && gcs[2].initialised) { hal.uartD->println_P(msg); } startup_ground(); if (should_log(MASK_LOG_CMD)) Log_Write_Startup(TYPE_GROUNDSTART_MSG); // choose the nav controller set_nav_controller(); set_mode(MANUAL); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** static void startup_ground(void) { set_mode(INITIALISING); gcs_send_text_P(SEVERITY_LOW,PSTR(" GROUND START")); #if (GROUND_START_DELAY > 0) gcs_send_text_P(SEVERITY_LOW,PSTR(" With Delay")); delay(GROUND_START_DELAY * 1000); #endif // Makes the servos wiggle // step 1 = 1 wiggle // ----------------------- if (!g.skip_gyro_cal) { demo_servos(1); } //INS ground start //------------------------ // startup_INS_ground(false); // read the radio to set trims // --------------------------- trim_radio(); // This was commented out as a HACK. Why? I don't find a problem. // Save the settings for in-air restart // ------------------------------------ //save_EEPROM_groundstart(); // initialise mission library mission.init(); // Makes the servos wiggle - 3 times signals ready to fly // ----------------------- if (!g.skip_gyro_cal) { demo_servos(3); } // reset last heartbeat time, so we don't trigger failsafe on slow // startup failsafe.last_heartbeat_ms = millis(); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly hal.uartA->set_blocking_writes(false); hal.uartB->set_blocking_writes(false); hal.uartC->set_blocking_writes(false); if (hal.uartD != NULL) { hal.uartD->set_blocking_writes(false); } gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY.")); } static enum FlightMode get_previous_mode() { return previous_mode; } static void set_mode(enum FlightMode mode) { if(control_mode == mode) { // don't switch modes if we are already in the correct mode. return; } if(g.auto_trim > 0 && control_mode == MANUAL) trim_control_surfaces(); // perform any cleanup required for prev flight mode exit_mode(control_mode); // cancel inverted flight auto_state.inverted_flight = false; // don't cross-track when starting a mission auto_state.next_wp_no_crosstrack = true; // reset landing check auto_state.checked_for_autoland = false; // reset go around command auto_state.commanded_go_around = false; // zero locked course steer_state.locked_course_err = 0; // set mode previous_mode = control_mode; control_mode = mode; if (previous_mode == AUTOTUNE && control_mode != AUTOTUNE) { // restore last gains autotune_restore(); } // zero initial pitch and highest airspeed on mode change auto_state.highest_airspeed = 0; auto_state.initial_pitch_cd = ahrs.pitch_sensor; // disable taildrag takeoff on mode change auto_state.fbwa_tdrag_takeoff_mode = false; switch(control_mode) { case INITIALISING: auto_throttle_mode = true; break; case MANUAL: case STABILIZE: case TRAINING: case FLY_BY_WIRE_A: auto_throttle_mode = false; break; case AUTOTUNE: auto_throttle_mode = false; autotune_start(); break; case ACRO: auto_throttle_mode = false; acro_state.locked_roll = false; acro_state.locked_pitch = false; break; case CRUISE: auto_throttle_mode = true; cruise_state.locked_heading = false; cruise_state.lock_timer_ms = 0; set_target_altitude_current(); break; case FLY_BY_WIRE_B: auto_throttle_mode = true; set_target_altitude_current(); break; case CIRCLE: // the altitude to circle at is taken from the current altitude auto_throttle_mode = true; next_WP_loc.alt = current_loc.alt; break; case AUTO: auto_throttle_mode = true; next_WP_loc = prev_WP_loc = current_loc; // start or resume the mission, based on MIS_AUTORESET mission.start_or_resume(); break; case RTL: auto_throttle_mode = true; prev_WP_loc = current_loc; do_RTL(); break; case LOITER: auto_throttle_mode = true; do_loiter_at_location(); break; case GUIDED: auto_throttle_mode = true; guided_throttle_passthru = false; set_guided_WP(); break; } // start with throttle suppressed in auto_throttle modes throttle_suppressed = auto_throttle_mode; if (should_log(MASK_LOG_MODE)) Log_Write_Mode(control_mode); // reset attitude integrators on mode change rollController.reset_I(); pitchController.reset_I(); yawController.reset_I(); steerController.reset_I(); } /* set_mode() wrapper for MAVLink SET_MODE */ static bool mavlink_set_mode(uint8_t mode) { switch (mode) { case MANUAL: case CIRCLE: case STABILIZE: case TRAINING: case ACRO: case FLY_BY_WIRE_A: case AUTOTUNE: case FLY_BY_WIRE_B: case CRUISE: case AUTO: case RTL: case LOITER: set_mode((enum FlightMode)mode); return true; } return false; } // exit_mode - perform any cleanup required when leaving a flight mode static void exit_mode(enum FlightMode mode) { // stop mission when we leave auto if (mode == AUTO) { if (mission.state() == AP_Mission::MISSION_RUNNING) { mission.stop(); } } } static void check_long_failsafe() { uint32_t tnow = millis(); // only act on changes // ------------------- if(failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS) { if (failsafe.rc_override_active && (tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_LONG); } else if (!failsafe.rc_override_active && failsafe.state == FAILSAFE_SHORT && (tnow - failsafe.ch3_timer_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_LONG); } else if (g.gcs_heartbeat_fs_enabled != GCS_FAILSAFE_OFF && failsafe.last_heartbeat_ms != 0 && (tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_GCS); } else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI && gcs[0].last_radio_status_remrssi_ms != 0 && (tnow - gcs[0].last_radio_status_remrssi_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_GCS); } } else { // We do not change state but allow for user to change mode if (failsafe.state == FAILSAFE_GCS && (tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) { failsafe.state = FAILSAFE_NONE; } else if (failsafe.state == FAILSAFE_LONG && failsafe.rc_override_active && (tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) { failsafe.state = FAILSAFE_NONE; } else if (failsafe.state == FAILSAFE_LONG && !failsafe.rc_override_active && !failsafe.ch3_failsafe) { failsafe.state = FAILSAFE_NONE; } } } static void check_short_failsafe() { // only act on changes // ------------------- if(failsafe.state == FAILSAFE_NONE) { if(failsafe.ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde failsafe_short_on_event(FAILSAFE_SHORT); } } if(failsafe.state == FAILSAFE_SHORT) { if(!failsafe.ch3_failsafe) { failsafe_short_off_event(); } } } static void startup_INS_ground(bool do_accel_init) { #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message")); hal.scheduler->delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif AP_InertialSensor::Start_style style; if (g.skip_gyro_cal && !do_accel_init) { style = AP_InertialSensor::WARM_START; } else { style = AP_InertialSensor::COLD_START; } if (style == AP_InertialSensor::COLD_START) { gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane")); mavlink_delay(100); } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING); ahrs.set_wind_estimation(true); ins.init(style, ins_sample_rate); if (do_accel_init) { ins.init_accel(); ahrs.set_trim(Vector3f(0, 0, 0)); } ahrs.reset(); // read Baro pressure at ground //----------------------------- init_barometer(); if (airspeed.enabled()) { // initialize airspeed sensor // -------------------------- zero_airspeed(true); } else { gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed")); } } // updates the status of the notify objects // should be called at 50hz static void update_notify() { notify.update(); } static void resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; G_Dt_min = 0; perf_mon_timer = millis(); } static void check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 // the APM2 has a MUX setup where the first serial port switches // between USB and a TTL serial connection. When on USB we use // SERIAL0_BAUD, but when connected as a TTL serial port we run it // at SERIAL1_BAUD. if (usb_connected) { hal.uartA->begin(SERIAL0_BAUD); } else { hal.uartA->begin(map_baudrate(g.serial1_baud)); } #endif } static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case MANUAL: port->print_P(PSTR("Manual")); break; case CIRCLE: port->print_P(PSTR("Circle")); break; case STABILIZE: port->print_P(PSTR("Stabilize")); break; case TRAINING: port->print_P(PSTR("Training")); break; case ACRO: port->print_P(PSTR("ACRO")); break; case FLY_BY_WIRE_A: port->print_P(PSTR("FBW_A")); break; case AUTOTUNE: port->print_P(PSTR("AUTOTUNE")); break; case FLY_BY_WIRE_B: port->print_P(PSTR("FBW_B")); break; case CRUISE: port->print_P(PSTR("CRUISE")); break; case AUTO: port->print_P(PSTR("AUTO")); break; case RTL: port->print_P(PSTR("RTL")); break; case LOITER: port->print_P(PSTR("Loiter")); break; case GUIDED: port->print_P(PSTR("Guided")); break; default: port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); break; } } static void print_comma(void) { cliSerial->print_P(PSTR(",")); } /* write to a servo */ static void servo_write(uint8_t ch, uint16_t pwm) { #if HIL_MODE != HIL_MODE_DISABLED if (!g.hil_servos) { if (ch < 8) { RC_Channel::rc_channel(ch)->radio_out = pwm; } return; } #endif hal.rcout->enable_ch(ch); hal.rcout->write(ch, pwm); } /* should we log a message type now? */ static bool should_log(uint32_t mask) { if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = ahrs.get_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0; if (ret && !DataFlash.logging_started() && !in_log_download) { // we have to set in_mavlink_delay to prevent logging while // writing headers in_mavlink_delay = true; start_logging(); in_mavlink_delay = false; } return ret; } /* send FrSky telemetry. Should be called at 5Hz by scheduler */ static void telemetry_send(void) { #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.send_frames((uint8_t)control_mode, (AP_Frsky_Telem::FrSkyProtocol)g.serial2_protocol.get()); #endif } /* return throttle percentage from 0 to 100 */ static uint8_t throttle_percentage(void) { // to get the real throttle we need to use norm_output() which // returns a number from -1 to 1. return constrain_int16(50*(channel_throttle->norm_output()+1), 0, 100); }