/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_RangeFinder_Benewake.h" #if AP_RANGEFINDER_BENEWAKE_ENABLED #include #include #include extern const AP_HAL::HAL& hal; #define BENEWAKE_FRAME_HEADER 0x59 #define BENEWAKE_FRAME_LENGTH 9 #define BENEWAKE_DIST_MAX_CM 32768 #define BENEWAKE_OUT_OF_RANGE_ADD_CM 100 // format of serial packets received from benewake lidar // // Data Bit Definition Description // ------------------------------------------------ // byte 0 Frame header 0x59 // byte 1 Frame header 0x59 // byte 2 DIST_L Distance (in cm) low 8 bits // byte 3 DIST_H Distance (in cm) high 8 bits // byte 4 STRENGTH_L Strength low 8 bits // bute 4 (TF03) (Reserved) // byte 5 STRENGTH_H Strength high 8 bits // bute 5 (TF03) (Reserved) // byte 6 (TF02) SIG Reliability in 8 levels, 7 & 8 means reliable // byte 6 (TFmini) Distance Mode 0x02 for short distance (mm), 0x07 for long distance (cm) // byte 6 (TF03) (Reserved) // byte 7 (TF02 only) TIME Exposure time in two levels 0x03 and 0x06 // byte 8 Checksum Checksum byte, sum of bytes 0 to bytes 7 // distance returned in reading_m, signal_ok is set to true if sensor reports a strong signal bool AP_RangeFinder_Benewake::get_reading(float &reading_m) { if (uart == nullptr) { return false; } float sum_cm = 0; uint16_t count = 0; uint16_t count_out_of_range = 0; // read any available lines from the lidar for (auto j=0; j<8192; j++) { uint8_t c; if (!uart->read(c)) { break; } // if buffer is empty and this byte is 0x59, add to buffer if (linebuf_len == 0) { if (c == BENEWAKE_FRAME_HEADER) { linebuf[linebuf_len++] = c; } } else if (linebuf_len == 1) { // if buffer has 1 element and this byte is 0x59, add it to buffer // if not clear the buffer if (c == BENEWAKE_FRAME_HEADER) { linebuf[linebuf_len++] = c; } else { linebuf_len = 0; } } else { // add character to buffer linebuf[linebuf_len++] = c; // if buffer now has 9 items try to decode it if (linebuf_len == BENEWAKE_FRAME_LENGTH) { // calculate checksum uint8_t checksum = 0; for (uint8_t i=0; i= BENEWAKE_DIST_MAX_CM || dist == uint16_t(model_dist_max_cm())) { // this reading is out of range. Note that we // consider getting exactly the model dist max // is out of range. This fixes an issue with // the TF03 which can give exactly 18000 cm // when out of range count_out_of_range++; } else if (!has_signal_byte()) { // no signal byte from TFmini so add distance to sum sum_cm += dist; count++; } else { // TF02 provides signal reliability (good = 7 or 8) if (linebuf[6] >= 7) { // add distance to sum sum_cm += dist; count++; } else { // this reading is out of range count_out_of_range++; } } } // clear buffer linebuf_len = 0; } } } if (count > 0) { // return average distance of readings reading_m = (sum_cm * 0.01f) / count; return true; } if (count_out_of_range > 0) { // if only out of range readings return larger of // driver defined maximum range for the model and user defined max range + 1m reading_m = MAX(model_dist_max_cm(), max_distance_cm() + BENEWAKE_OUT_OF_RANGE_ADD_CM) * 0.01f; return true; } // no readings so return false return false; } #endif // AP_RANGEFINDER_BENEWAKE_ENABLED