#include "AP_Scripting_config.h" #if AP_SCRIPTING_ENABLED #include #include #include #include #include "lua_bindings.h" #include "lua_boxed_numerics.h" #include #include #include extern const AP_HAL::HAL& hal; extern "C" { #include "lua/src/lmem.h" } extern const AP_HAL::HAL& hal; // millis int lua_millis(lua_State *L) { binding_argcheck(L, 0); new_uint32_t(L); *check_uint32_t(L, -1) = AP_HAL::millis(); return 1; } // micros int lua_micros(lua_State *L) { binding_argcheck(L, 0); new_uint32_t(L); *check_uint32_t(L, -1) = AP_HAL::micros(); return 1; } int lua_mavlink_init(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "mavlink") != NULL) ? 1 : 0; binding_argcheck(L, 2+arg_offset); WITH_SEMAPHORE(AP::scripting()->mavlink_data.sem); // get the depth of receive queue const uint32_t queue_size = get_uint32(L, 1+arg_offset, 0, 25); // get number of msgs to accept const uint32_t num_msgs = get_uint32(L, 2+arg_offset, 0, 25); struct AP_Scripting::mavlink &data = AP::scripting()->mavlink_data; if (data.rx_buffer == nullptr) { data.rx_buffer = new ObjectBuffer(queue_size); if (data.rx_buffer == nullptr) { return luaL_error(L, "Failed to allocate mavlink rx buffer"); } } if (data.accept_msg_ids == nullptr) { data.accept_msg_ids = new uint32_t[num_msgs]; if (data.accept_msg_ids == nullptr) { return luaL_error(L, "Failed to allocate mavlink rx registry"); } data.accept_msg_ids_size = num_msgs; memset(data.accept_msg_ids, UINT32_MAX, sizeof(int) * num_msgs); } return 0; } int lua_mavlink_receive_chan(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "mavlink") != NULL) ? 1 : 0; binding_argcheck(L, arg_offset); struct AP_Scripting::mavlink_msg msg; ObjectBuffer *rx_buffer = AP::scripting()->mavlink_data.rx_buffer; if (rx_buffer == nullptr) { return luaL_error(L, "Never subscribed to a message"); } if (rx_buffer->pop(msg)) { luaL_Buffer b; luaL_buffinit(L, &b); luaL_addlstring(&b, (char *)&msg.msg, sizeof(msg.msg)); luaL_pushresult(&b); lua_pushinteger(L, msg.chan); new_uint32_t(L); *check_uint32_t(L, -1) = msg.timestamp_ms; return 3; } else { // no MAVLink to handle, just return no results return 0; } } int lua_mavlink_register_rx_msgid(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "mavlink") != NULL) ? 1 : 0; binding_argcheck(L, 1+arg_offset); const uint32_t msgid = get_uint32(L, 1+arg_offset, 0, (1 << 24) - 1); struct AP_Scripting::mavlink &data = AP::scripting()->mavlink_data; // check that we aren't currently watching this ID for (uint8_t i = 0; i < data.accept_msg_ids_size; i++) { if (data.accept_msg_ids[i] == msgid) { lua_pushboolean(L, false); return 1; } } int i = 0; for (i = 0; i < data.accept_msg_ids_size; i++) { if (data.accept_msg_ids[i] == UINT32_MAX) { break; } } if (i >= data.accept_msg_ids_size) { return luaL_error(L, "Out of MAVLink ID's to monitor"); } { WITH_SEMAPHORE(data.sem); data.accept_msg_ids[i] = msgid; } lua_pushboolean(L, true); return 1; } int lua_mavlink_send_chan(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "mavlink") != NULL) ? 1 : 0; binding_argcheck(L, 3+arg_offset); const mavlink_channel_t chan = (mavlink_channel_t)get_uint32(L, 1+arg_offset, 0, MAVLINK_COMM_NUM_BUFFERS - 1); const uint32_t msgid = get_uint32(L, 2+arg_offset, 0, (1 << 24) - 1); const char *packet = luaL_checkstring(L, 3+arg_offset); // FIXME: The data that's in this mavlink_msg_entry_t should be provided from the script, which allows // sending entirely new messages as outputs. At the moment we can only encode messages that // are known at compile time. This is fine as a starting point as this is symmetrical to the // decoding side of the scripting support const mavlink_msg_entry_t *entry = mavlink_get_msg_entry(msgid); if (entry == nullptr) { return luaL_error(L, "Unknown MAVLink message ID (%d)", msgid); } WITH_SEMAPHORE(comm_chan_lock(chan)); if (comm_get_txspace(chan) >= (GCS_MAVLINK::packet_overhead_chan(chan) + entry->max_msg_len)) { _mav_finalize_message_chan_send(chan, entry->msgid, packet, entry->min_msg_len, entry->max_msg_len, entry->crc_extra); lua_pushboolean(L, true); } else { lua_pushboolean(L, false); } return 1; } int lua_mission_receive(lua_State *L) { binding_argcheck(L, 0); ObjectBuffer *input = AP::scripting()->mission_data; if (input == nullptr) { // no mission items ever received return 0; } struct AP_Scripting::scripting_mission_cmd cmd; if (!input->pop(cmd)) { // no new item return 0; } new_uint32_t(L); *check_uint32_t(L, -1) = cmd.time_ms; lua_pushinteger(L, cmd.p1); lua_pushnumber(L, cmd.content_p1); lua_pushnumber(L, cmd.content_p2); lua_pushnumber(L, cmd.content_p3); return 5; } int AP_Logger_Write(lua_State *L) { AP_Logger * AP_logger = AP_Logger::get_singleton(); if (AP_logger == nullptr) { return luaL_argerror(L, 1, "logger not supported on this firmware"); } // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "logger") != NULL) ? 1 : 0; // check we have at least 4 arguments passed in const int args = lua_gettop(L) - arg_offset; if (args < 4) { return luaL_argerror(L, args, "too few arguments"); } const char * name = luaL_checkstring(L, 1 + arg_offset); const char * labels = luaL_checkstring(L, 2 + arg_offset); const char * fmt = luaL_checkstring(L, 3 + arg_offset); // cheack the name, labels and format are not too long if (strlen(name) >= LS_NAME_SIZE) { return luaL_error(L, "Name must be 4 or less chars long"); } uint8_t length = strlen(labels); if (length >= (LS_LABELS_SIZE - 7)) { // need 7 chars to add 'TimeUS,' return luaL_error(L, "labels must be less than 58 chars long"); } // Count the number of commas uint8_t commas = 1; for (uint8_t i=0; i= (LS_FORMAT_SIZE - 1)) { // need 1 char to add timestamp return luaL_error(L, "format must be less than 15 chars long"); } // check the number of arguments matches the number of values in the label if (length != commas) { return luaL_argerror(L, args, "label does not match format"); } bool have_units = false; if (args - 5 == length) { // check if there are enough arguments for units and multiplyers have_units = true; } else if (args - 3 != length) { // check the number of arguments matches the length of the foramt string return luaL_argerror(L, args, "format does not match No. of arguments"); } // prepend timestamp to format and labels char label_cat[LS_LABELS_SIZE]; strcpy(label_cat,"TimeUS,"); strcat(label_cat,labels); char fmt_cat[LS_FORMAT_SIZE]; strcpy(fmt_cat,"Q"); strcat(fmt_cat,fmt); // Need to declare these here so they don't go out of scope char units_cat[LS_FORMAT_SIZE]; char multipliers_cat[LS_FORMAT_SIZE]; uint8_t field_start = 4; struct AP_Logger::log_write_fmt *f; if (!have_units) { // ask for a mesage type f = AP_logger->msg_fmt_for_name(name, label_cat, nullptr, nullptr, fmt_cat, true, true); } else { // read in units and multiplers strings field_start += 2; const char * units = luaL_checkstring(L, 4 + arg_offset); const char * multipliers = luaL_checkstring(L, 5 + arg_offset); if (length != strlen(units)) { return luaL_error(L, "units must be same length as format"); } if (length != strlen(multipliers)) { return luaL_error(L, "multipliers must be same length as format"); } // prepend timestamp to units and multiplyers strcpy(units_cat,"s"); strcat(units_cat,units); strcpy(multipliers_cat,"F"); strcat(multipliers_cat,multipliers); // ask for a mesage type f = AP_logger->msg_fmt_for_name(name, label_cat, units_cat, multipliers_cat, fmt_cat, true, true); } if (f == nullptr) { // unable to map name to a messagetype; could be out of // msgtypes, could be out of slots, ... return luaL_argerror(L, args, "could not map message type"); } // work out how long the block will be int16_t msg_len = AP_logger->Write_calc_msg_len(fmt_cat); if (msg_len == -1) { return luaL_argerror(L, args, "unknown format"); } // note that luaM_malloc will never return null, it will fault instead char *buffer = (char*)luaM_malloc(L, msg_len); // add logging headers uint8_t offset = 0; buffer[offset++] = HEAD_BYTE1; buffer[offset++] = HEAD_BYTE2; buffer[offset++] = f->msg_type; // timestamp is always first value const uint64_t now = AP_HAL::micros64(); memcpy(&buffer[offset], &now, sizeof(uint64_t)); offset += sizeof(uint64_t); for (uint8_t i=field_start; i<=args; i++) { uint8_t charlen = 0; uint8_t index = have_units ? i-5 : i-3; uint8_t arg_index = i + arg_offset; switch(fmt_cat[index]) { // logger variable types not available to scripting // 'd': double // 'Q': uint64_t // 'q': int64_t // 'a': arrays case 'b': { // int8_t int isnum; const lua_Integer tmp1 = lua_tointegerx(L, arg_index, &isnum); if (!isnum || (tmp1 < INT8_MIN) || (tmp1 > INT8_MAX)) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } int8_t tmp = static_cast(tmp1); memcpy(&buffer[offset], &tmp, sizeof(int8_t)); offset += sizeof(int8_t); break; } case 'h': // int16_t case 'c': { // int16_t * 100 int isnum; const lua_Integer tmp1 = lua_tointegerx(L, arg_index, &isnum); if (!isnum || (tmp1 < INT16_MIN) || (tmp1 > INT16_MAX)) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } int16_t tmp = static_cast(tmp1); memcpy(&buffer[offset], &tmp, sizeof(int16_t)); offset += sizeof(int16_t); break; } case 'H': // uint16_t case 'C': { // uint16_t * 100 int isnum; const lua_Integer tmp1 = lua_tointegerx(L, arg_index, &isnum); if (!isnum || (tmp1 < 0) || (tmp1 > UINT16_MAX)) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } uint16_t tmp = static_cast(tmp1); memcpy(&buffer[offset], &tmp, sizeof(uint16_t)); offset += sizeof(uint16_t); break; } case 'i': // int32_t case 'L': // int32_t (lat/long) case 'e': { // int32_t * 100 int isnum; const lua_Integer tmp1 = lua_tointegerx(L, arg_index, &isnum); if (!isnum) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } const int32_t tmp = tmp1; memcpy(&buffer[offset], &tmp, sizeof(int32_t)); offset += sizeof(int32_t); break; } case 'f': { // float int isnum; const lua_Number tmp1 = lua_tonumberx(L, arg_index, &isnum); if (!isnum) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } const float tmp = tmp1; memcpy(&buffer[offset], &tmp, sizeof(float)); offset += sizeof(float); break; } case 'n': { // char[4] charlen = 4; break; } case 'M': // uint8_t (flight mode) case 'B': { // uint8_t int isnum; const lua_Integer tmp1 = lua_tointegerx(L, arg_index, &isnum); if (!isnum || (tmp1 < 0) || (tmp1 > UINT8_MAX)) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } uint8_t tmp = static_cast(tmp1); memcpy(&buffer[offset], &tmp, sizeof(uint8_t)); offset += sizeof(uint8_t); break; } case 'I': // uint32_t case 'E': { // uint32_t * 100 uint32_t tmp; void * ud = luaL_testudata(L, arg_index, "uint32_t"); if (ud != nullptr) { tmp = *static_cast(ud); } else { int success; const lua_Integer v_int = lua_tointegerx(L, arg_index, &success); if (success) { tmp = v_int; } else { const lua_Number v_float = lua_tonumberx(L, arg_index, &success); if (!success || (v_float < 0) || (v_float > float(UINT32_MAX))) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } tmp = v_float; } } memcpy(&buffer[offset], &tmp, sizeof(uint32_t)); offset += sizeof(uint32_t); break; } case 'N': { // char[16] charlen = 16; break; } case 'Z': { // char[64] charlen = 64; break; } default: { luaM_free(L, buffer); luaL_error(L, "%c unsupported format",fmt_cat[index]); // no return } } if (charlen != 0) { size_t slen; const char *tmp = lua_tolstring(L, arg_index, &slen); if (tmp == nullptr) { luaM_free(L, buffer); luaL_argerror(L, arg_index, "argument out of range"); // no return } if (slen > charlen) { luaM_free(L, buffer); luaL_error(L, "arg %d too long for %c format",arg_index,fmt_cat[index]); // no return } memcpy(&buffer[offset], tmp, slen); memset(&buffer[offset+slen], 0, charlen-slen); offset += charlen; } } AP_logger->Safe_Write_Emit_FMT(f); AP_logger->WriteBlock(buffer,msg_len); luaM_free(L, buffer); return 0; } int lua_get_i2c_device(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "i2c") != NULL) ? 1 : 0; const int args = lua_gettop(L) - arg_offset; if (args < 2) { return luaL_argerror(L, args, "require i2c bus and address"); } if (args > 4) { return luaL_argerror(L, args, "too many arguments"); } const lua_Integer bus_in = get_integer(L, 1 + arg_offset, 0, 4); const uint8_t bus = static_cast(bus_in); const lua_Integer address_in = get_integer(L, 2 + arg_offset, 0, 128); const uint8_t address = static_cast(address_in); // optional arguments, use the same defaults as the hal get_device function uint32_t bus_clock = 400000; bool use_smbus = false; if (args > 2) { bus_clock = coerce_to_uint32_t(L, 3 + arg_offset); if (args > 3) { use_smbus = static_cast(lua_toboolean(L, 4 + arg_offset)); } } auto *scripting = AP::scripting(); static_assert(SCRIPTING_MAX_NUM_I2C_DEVICE >= 0, "There cannot be a negative number of I2C devices"); if (scripting->num_i2c_devices >= SCRIPTING_MAX_NUM_I2C_DEVICE) { return luaL_argerror(L, 1, "no i2c devices available"); } scripting->_i2c_dev[scripting->num_i2c_devices] = new AP_HAL::OwnPtr; if (scripting->_i2c_dev[scripting->num_i2c_devices] == nullptr) { return luaL_argerror(L, 1, "i2c device nullptr"); } *scripting->_i2c_dev[scripting->num_i2c_devices] = std::move(hal.i2c_mgr->get_device(bus, address, bus_clock, use_smbus)); if (scripting->_i2c_dev[scripting->num_i2c_devices] == nullptr || scripting->_i2c_dev[scripting->num_i2c_devices]->get() == nullptr) { return luaL_argerror(L, 1, "i2c device nullptr"); } new_AP_HAL__I2CDevice(L); *((AP_HAL::I2CDevice**)luaL_checkudata(L, -1, "AP_HAL::I2CDevice")) = scripting->_i2c_dev[scripting->num_i2c_devices]->get(); scripting->num_i2c_devices++; return 1; } int AP_HAL__I2CDevice_read_registers(lua_State *L) { const int args = lua_gettop(L); bool multi_register; if (args == 2) { multi_register = false; } else if (args == 3) { multi_register = true; } else { return luaL_argerror(L, args, "expected 1 or 2 arguments"); } AP_HAL::I2CDevice * ud = *check_AP_HAL__I2CDevice(L, 1); const uint8_t first_reg = get_uint8_t(L, 2); uint8_t recv_length = 1; if (multi_register) { recv_length = get_uint8_t(L, 3); } uint8_t data[recv_length]; ud->get_semaphore()->take_blocking(); const bool success = static_cast(ud->read_registers(first_reg, data, recv_length)); ud->get_semaphore()->give(); if (success) { if (!multi_register) { lua_pushinteger(L, data[0]); } else { // push to table lua_newtable(L); for (uint8_t i=0; i < recv_length; i++) { lua_pushinteger(L, i+1); lua_pushinteger(L, data[i]); lua_settable(L, -3); } } } return success; } #if HAL_MAX_CAN_PROTOCOL_DRIVERS int lua_get_CAN_device(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "CAN") != NULL) ? 1 : 0; binding_argcheck(L, 1 + arg_offset); const uint32_t raw_buffer_len = get_uint32(L, 1 + arg_offset, 1, 25); const uint32_t buffer_len = static_cast(raw_buffer_len); auto *scripting = AP::scripting(); if (scripting->_CAN_dev == nullptr) { scripting->_CAN_dev = new ScriptingCANSensor(AP_CAN::Protocol::Scripting); if (scripting->_CAN_dev == nullptr) { return luaL_argerror(L, 1, "CAN device nullptr"); } } new_ScriptingCANBuffer(L); *((ScriptingCANBuffer**)luaL_checkudata(L, -1, "ScriptingCANBuffer")) = scripting->_CAN_dev->add_buffer(buffer_len); return 1; } int lua_get_CAN_device2(lua_State *L) { // Allow : and . access const int arg_offset = (luaL_testudata(L, 1, "CAN") != NULL) ? 1 : 0; binding_argcheck(L, 1 + arg_offset); const uint32_t raw_buffer_len = get_uint32(L, 1 + arg_offset, 1, 25); const uint32_t buffer_len = static_cast(raw_buffer_len); auto *scripting = AP::scripting(); if (scripting->_CAN_dev2 == nullptr) { scripting->_CAN_dev2 = new ScriptingCANSensor(AP_CAN::Protocol::Scripting2); if (scripting->_CAN_dev2 == nullptr) { return luaL_argerror(L, 1, "CAN device nullptr"); } } new_ScriptingCANBuffer(L); *((ScriptingCANBuffer**)luaL_checkudata(L, -1, "ScriptingCANBuffer")) = scripting->_CAN_dev2->add_buffer(buffer_len); return 1; } #endif // HAL_MAX_CAN_PROTOCOL_DRIVERS /* directory listing, return table of files in a directory */ int lua_dirlist(lua_State *L) { binding_argcheck(L, 1); struct dirent *entry; int i; const char *path = luaL_checkstring(L, 1); /* open directory */ auto dir = AP::FS().opendir(path); if (dir == nullptr) { /* error opening the directory? */ lua_pushnil(L); /* return nil and ... */ lua_pushstring(L, strerror(errno)); /* error message */ return 2; /* number of results */ } /* create result table */ lua_newtable(L); i = 1; while ((entry = AP::FS().readdir(dir)) != nullptr) { lua_pushnumber(L, i++); /* push key */ lua_pushstring(L, entry->d_name); /* push value */ lua_settable(L, -3); } AP::FS().closedir(dir); return 1; /* table is already on top */ } /* remove a file */ int lua_removefile(lua_State *L) { binding_argcheck(L, 1); const char *filename = luaL_checkstring(L, 1); return luaL_fileresult(L, remove(filename) == 0, filename); } // Manual binding to allow SRV_Channels table to see safety state int SRV_Channels_get_safety_state(lua_State *L) { binding_argcheck(L, 1); const bool data = hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_ARMED; lua_pushboolean(L, data); return 1; } int lua_get_PWMSource(lua_State *L) { binding_argcheck(L, 0); auto *scripting = AP::scripting(); static_assert(SCRIPTING_MAX_NUM_PWM_SOURCE >= 0, "There cannot be a negative number of PWMSources"); if (scripting->num_pwm_source >= SCRIPTING_MAX_NUM_PWM_SOURCE) { return luaL_argerror(L, 1, "no PWMSources available"); } scripting->_pwm_source[scripting->num_pwm_source] = new AP_HAL::PWMSource; if (scripting->_pwm_source[scripting->num_pwm_source] == nullptr) { return luaL_argerror(L, 1, "PWMSources device nullptr"); } new_AP_HAL__PWMSource(L); *((AP_HAL::PWMSource**)luaL_checkudata(L, -1, "AP_HAL::PWMSource")) = scripting->_pwm_source[scripting->num_pwm_source]; scripting->num_pwm_source++; return 1; } int lua_get_current_ref() { auto *scripting = AP::scripting(); return scripting->get_current_ref(); } #endif // AP_SCRIPTING_ENABLED