// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Sensors are not available in HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE static void ReadSCP1000(void) {} static void init_barometer(void) { #if HIL_MODE == HIL_MODE_SENSORS hil.update(); // look for inbound hil packets for initialization #endif ground_temperature = barometer.Temp; int i; // We take some readings... for(i = 0; i < 60; i++){ delay(20); // get new data from absolute pressure sensor barometer.Read(); //Serial.printf("init %ld, %d, -, %ld, %ld\n", barometer.RawTemp, barometer.Temp, barometer.RawPress, barometer.Press); } for(i = 0; i < 20; i++){ delay(20); #if HIL_MODE == HIL_MODE_SENSORS hil.update(); // look for inbound hil packets #endif // Get initial data from absolute pressure sensor barometer.Read(); ground_pressure = barometer.Press; ground_temperature = (ground_temperature * 9 + barometer.Temp) / 10; //Serial.printf("init %ld, %d, -, %ld, %ld, -, %d, %ld\n", barometer.RawTemp, barometer.Temp, barometer.RawPress, barometer.Press, ground_temperature, ground_pressure); } abs_pressure = ground_pressure; //Serial.printf("init %ld\n", abs_pressure); //SendDebugln("barometer calibration complete."); } /* static long read_baro_filtered(void) { // get new data from absolute pressure sensor barometer.Read(); return barometer.Press; long pressure = 0; // add new data into our filter baro_filter[baro_filter_index] = barometer.Press; baro_filter_index++; // loop our filter if(baro_filter_index >= BARO_FILTER_SIZE) baro_filter_index = 0; // zero out our accumulator // sum our filter for(byte i = 0; i < BARO_FILTER_SIZE; i++){ pressure += baro_filter[i]; } // average our sampels return pressure /= BARO_FILTER_SIZE; // } */ static long read_barometer(void) { float x, scaling, temp; barometer.Read(); abs_pressure = barometer.Press; //Serial.printf("%ld, %ld, %ld, %ld\n", barometer.RawTemp, barometer.RawPress, barometer.Press, abs_pressure); scaling = (float)ground_pressure / (float)abs_pressure; temp = ((float)ground_temperature / 10.0f) + 273.15f; x = log(scaling) * temp * 29271.267f; return (x / 10); } // in M/S * 100 static void read_airspeed(void) { } static void zero_airspeed(void) { } #endif // HIL_MODE != HIL_MODE_ATTITUDE static void read_battery(void) { battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9; battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9; battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9; battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9; if(g.battery_monitoring == 1) battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream if(g.battery_monitoring == 2) battery_voltage = battery_voltage4; if(g.battery_monitoring == 3 || g.battery_monitoring == 4) battery_voltage = battery_voltage1; if(g.battery_monitoring == 4) { current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin current_total += current_amps * 0.0278; // called at 100ms on average } #if BATTERY_EVENT == 1 //if(battery_voltage < g.low_voltage) // low_battery_event(); if((battery_voltage < g.low_voltage) || (g.battery_monitoring == 4 && current_total > g.pack_capacity)){ low_battery_event(); #if PIEZO_LOW_VOLTAGE == 1 // Only Activate if a battery is connected to avoid alarm on USB only if (battery_voltage1 > 1){ piezo_on(); }else{ piezo_off(); } #endif }else{ #if PIEZO_LOW_VOLTAGE == 1 piezo_off(); #endif } #endif } //v: 10.9453, a: 17.4023, mah: 8.2