#pragma GCC optimize("O3") #include #include extern const AP_HAL::HAL& hal; /* * generic matrix inverse code * * @param x, input nxn matrix * @param n, dimension of square matrix * @returns determinant of square matrix * Known Issues/ Possible Enhancements: * -more efficient method should be available, following is code generated from matlab */ float detnxn(const float C[],const uint8_t n) { float f; float *A = new float[n*n]; if( A == NULL) { return 0; } int8_t *ipiv = new int8_t[n]; if(ipiv == NULL) { delete[] A; return 0; } int32_t i0; int32_t j; int32_t c; int32_t iy; int32_t ix; float smax; int32_t jy; float s; int32_t b_j; int32_t ijA; bool isodd; memcpy(&A[0], &C[0], n*n * sizeof(float)); for (i0 = 0; i0 < n; i0++) { ipiv[i0] = (int8_t)(1 + i0); } for (j = 0; j < n-1; j++) { c = j * (n+1); iy = 0; ix = c; smax = fabs(A[c]); for (jy = 2; jy <= n - 1 - j; jy++) { ix++; s = fabs(A[ix]); if (s > smax) { iy = jy - 1; smax = s; } } if (!is_zero(A[c + iy])) { if (iy != 0) { ipiv[j] = (int8_t)((j + iy) + 1); ix = j; iy += j; for (jy = 0; jy < n; jy++) { smax = A[ix]; A[ix] = A[iy]; A[iy] = smax; ix += n; iy += n; } } i0 = (c - j) + n; for (iy = c + 1; iy + 1 <= i0; iy++) { A[iy] /= A[c]; } } iy = c; jy = c + n; for (b_j = 1; b_j <= n - 1 - j; b_j++) { smax = A[jy]; if (!is_zero(A[jy])) { ix = c + 1; i0 = (iy - j) + (2*n); for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) { A[ijA] += A[ix] * -smax; ix++; } } jy += n; iy += n; } } f = A[0]; isodd = false; for (jy = 0; jy < (n-1); jy++) { f *= A[(jy + n * (1 + jy)) + 1]; if (ipiv[jy] > 1 + jy) { isodd = !isodd; } } if (isodd) { f = -f; } delete[] A; delete[] ipiv; return f; } /* * generic matrix inverse code * * @param x, input nxn matrix * @param y, Output inverted nxn matrix * @param n, dimension of square matrix * @returns false = matrix is Singular, true = matrix inversion successful * Known Issues/ Possible Enhancements: * -more efficient method should be available, following is code generated from matlab */ bool inversenxn(const float x[], float y[], const uint8_t n) { if (is_zero(detnxn(x,n))) { return false; } float *A = new float[n*n]; if( A == NULL ){ return false; } int32_t i0; int32_t *ipiv = new int32_t[n]; if(ipiv == NULL) { delete[] A; return false; } int32_t j; int32_t c; int32_t pipk; int32_t ix; float smax; int32_t k; float s; int32_t jy; int32_t ijA; int32_t *p = new int32_t[n]; if(p == NULL) { delete[] A; delete[] ipiv; return false; } for (i0 = 0; i0 < n*n; i0++) { A[i0] = x[i0]; y[i0] = 0.0f; } for (i0 = 0; i0 < n; i0++) { ipiv[i0] = (int32_t)(1 + i0); } for (j = 0; j < (n-1); j++) { c = j * (n+1); pipk = 0; ix = c; smax = fabsf(A[c]); for (k = 2; k <= (n-1) - j; k++) { ix++; s = fabsf(A[ix]); if (s > smax) { pipk = k - 1; smax = s; } } if (!is_zero(A[c + pipk])) { if (pipk != 0) { ipiv[j] = (int32_t)((j + pipk) + 1); ix = j; pipk += j; for (k = 0; k < n; k++) { smax = A[ix]; A[ix] = A[pipk]; A[pipk] = smax; ix += n; pipk += n; } } i0 = (c - j) + n; for (jy = c + 1; jy + 1 <= i0; jy++) { A[jy] /= A[c]; } } pipk = c; jy = c + n; for (k = 1; k <= (n-1) - j; k++) { smax = A[jy]; if (!is_zero(A[jy])) { ix = c + 1; i0 = (pipk - j) + (2*n); for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) { A[ijA] += A[ix] * -smax; ix++; } } jy += n; pipk += n; } } for (i0 = 0; i0 < n; i0++) { p[i0] = (int32_t)(1 + i0); } for (k = 0; k < (n-1); k++) { if (ipiv[k] > 1 + k) { pipk = p[ipiv[k] - 1]; p[ipiv[k] - 1] = p[k]; p[k] = (int32_t)pipk; } } for (k = 0; k < n; k++) { y[k + n * (p[k] - 1)] = 1.0; for (j = k; j + 1 < (n+1); j++) { if (!is_zero(y[j + n * (p[k] - 1)])) { for (jy = j + 1; jy + 1 < (n+1); jy++) { y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j]; } } } } for (j = 0; j < n; j++) { c = n * j; for (k = (n-1); k > -1; k += -1) { pipk = n * k; if (!is_zero(y[k + c])) { y[k + c] /= A[k + pipk]; for (jy = 0; jy + 1 <= k; jy++) { y[jy + c] -= y[k + c] * A[jy + pipk]; } } } } delete[] A; delete[] ipiv; delete[] p; return true; } /* * matrix inverse code only for 3x3 square matrix * * @param m, input 4x4 matrix * @param invOut, Output inverted 4x4 matrix * @returns false = matrix is Singular, true = matrix inversion successful */ bool inverse3x3(float m[], float invOut[]) { float inv[9]; // computes the inverse of a matrix m float det = m[0] * (m[4] * m[8] - m[7] * m[5]) - m[1] * (m[3] * m[8] - m[5] * m[6]) + m[2] * (m[3] * m[7] - m[4] * m[6]); if (is_zero(det)){ return false; } float invdet = 1 / det; inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet; inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet; inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet; inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet; inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet; inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet; inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet; inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet; inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet; for(uint8_t i = 0; i < 9; i++){ invOut[i] = inv[i]; } return true; } /* * matrix inverse code only for 4x4 square matrix copied from * gluInvertMatrix implementation in * opengl for 4x4 matrices. * * @param m, input 4x4 matrix * @param invOut, Output inverted 4x4 matrix * @returns false = matrix is Singular, true = matrix inversion successful */ bool inverse4x4(float m[],float invOut[]) { float inv[16], det; uint8_t i; inv[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10]; inv[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10]; inv[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9]; inv[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9]; inv[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10]; inv[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10]; inv[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9]; inv[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9]; inv[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6]; inv[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6]; inv[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5]; inv[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5]; inv[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6]; inv[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6]; inv[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5]; inv[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5]; det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12]; if (is_zero(det)){ return false; } det = 1.0f / det; for (i = 0; i < 16; i++) invOut[i] = inv[i] * det; return true; } /* * generic matrix inverse code * * @param x, input nxn matrix * @param y, Output inverted nxn matrix * @param n, dimension of square matrix * @returns false = matrix is Singular, true = matrix inversion successful */ bool inverse(float x[], float y[], uint16_t dim) { switch(dim){ case 3: return inverse3x3(x,y); case 4: return inverse4x4(x,y); default: return inversenxn(x,y,dim); } }