/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * DataFlash_APM2.cpp - DataFlash log library for AT45DB321D * Code by Jordi Muñoz and Jose Julio. DIYDrones.com * This code works only on ATMega2560. It uses Serial port 3 in SPI MSPI mdoe. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Dataflash library for AT45DB321D flash memory * Memory organization : 8192 pages of 512 bytes or 528 bytes * * Maximun write bandwidth : 512 bytes in 14ms * This code is written so the master never has to wait to write the data on the eeprom * * Methods: * Init() : Library initialization (SPI initialization) * StartWrite(page) : Start a write session. page=start page. * WriteByte(data) : Write a byte * WriteInt(data) : Write an integer (2 bytes) * WriteLong(data) : Write a long (4 bytes) * StartRead(page) : Start a read on (page) * GetWritePage() : Returns the last page written to * GetPage() : Returns the last page read * ReadByte() * ReadInt() * ReadLong() * * Properties: * */ #include // for removing conflict with optical flow sensor on SPI3 bus #include "DataFlash_APM2.h" extern const AP_HAL::HAL& hal; /* * #define ENABLE_FASTSERIAL_DEBUG * * #ifdef ENABLE_FASTSERIAL_DEBUG # define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0) ##else # define serialDebug(fmt, args...) ##endif # //*/ #define DF_RESET 41 // RESET (PG0) #define DF_CARDDETECT 33 // PC4 // AT45DB321D Commands (from Datasheet) #define DF_TRANSFER_PAGE_TO_BUFFER_1 0x53 #define DF_TRANSFER_PAGE_TO_BUFFER_2 0x55 #define DF_STATUS_REGISTER_READ 0xD7 #define DF_READ_MANUFACTURER_AND_DEVICE_ID 0x9F #define DF_PAGE_READ 0xD2 #define DF_BUFFER_1_READ 0xD4 #define DF_BUFFER_2_READ 0xD6 #define DF_BUFFER_1_WRITE 0x84 #define DF_BUFFER_2_WRITE 0x87 #define DF_BUFFER_1_TO_PAGE_WITH_ERASE 0x83 #define DF_BUFFER_2_TO_PAGE_WITH_ERASE 0x86 #define DF_PAGE_ERASE 0x81 #define DF_BLOCK_ERASE 0x50 #define DF_SECTOR_ERASE 0x7C #define DF_CHIP_ERASE_0 0xC7 #define DF_CHIP_ERASE_1 0x94 #define DF_CHIP_ERASE_2 0x80 #define DF_CHIP_ERASE_3 0x9A // Public Methods ////////////////////////////////////////////////////////////// void DataFlash_APM2::Init(void) { // init to zero df_NumPages = 0; hal.gpio->pinMode(DF_RESET, GPIO_OUTPUT); hal.gpio->pinMode(DF_CARDDETECT, GPIO_INPUT); // Reset the chip hal.gpio->write(DF_RESET,0); hal.scheduler->delay(1); hal.gpio->write(DF_RESET,1); _spi = hal.spi->device(AP_HAL::SPIDevice_Dataflash); if (_spi == NULL) { hal.scheduler->panic( PSTR("PANIC: DataFlash SPIDeviceDriver not found")); return; } _spi_sem = _spi->get_semaphore(); if (_spi_sem == NULL) { hal.scheduler->panic( PSTR("PANIC: DataFlash SPIDeviceDriver semaphore is null")); return; /* never reached */ } if (!_spi_sem->take(5)) return; // get page size: 512 or 528 (by default: 528) df_PageSize=PageSize(); ReadManufacturerID(); _spi_sem->give(); // see page 22 of the spec for the density code uint8_t density_code = (df_device >> 8) & 0x1F; // note that we set df_NumPages to one lower than the highest, as // the last page is reserved for a config page if (density_code == 0x7) { // 32 Mbit df_NumPages = 8191; } else if (density_code == 0x6) { // 16 Mbit df_NumPages = 4095; } //serialDebug("density_code %d pages %d, size %d\n", density_code, df_NumPages, df_PageSize); } // This function is mainly to test the device void DataFlash_APM2::ReadManufacturerID() { // activate dataflash command decoder _spi->cs_assert(); // Read manufacturer and ID command... _spi->transfer(DF_READ_MANUFACTURER_AND_DEVICE_ID); df_manufacturer = _spi->transfer(0xff); df_device = _spi->transfer(0xff); df_device = (df_device<<8) | _spi->transfer(0xff); _spi->transfer(0xff); // release SPI bus for use by other sensors _spi->cs_release(); } // This function return 1 if Card is inserted on SD slot bool DataFlash_APM2::CardInserted() { //serialDebug("df_NumPages %d, detect:%d\n", df_NumPages, tmp); //return (df_NumPages >= 4095 && digitalRead(DF_CARDDETECT) == 0); return (df_NumPages >= 4095); } // Read the status register uint8_t DataFlash_APM2::ReadStatusReg() { uint8_t tmp; // activate dataflash command decoder _spi->cs_assert(); // Read status command _spi->transfer(DF_STATUS_REGISTER_READ); tmp = _spi->transfer(0x00); // We only want to extract the READY/BUSY bit // release SPI bus for use by other sensors _spi->cs_release(); return tmp; } // Read the status of the DataFlash inline uint8_t DataFlash_APM2::ReadStatus() { return(ReadStatusReg()&0x80); // We only want to extract the READY/BUSY bit } inline uint16_t DataFlash_APM2::PageSize() { return(528-((ReadStatusReg()&0x01)<<4)); // if first bit 1 trhen 512 else 528 bytes } // Wait until DataFlash is in ready state... void DataFlash_APM2::WaitReady() { while(!ReadStatus()) ; } void DataFlash_APM2::PageToBuffer(uint8_t BufferNum, uint16_t PageAdr) { if (!_spi_sem->take(1)) return; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[4]; cmd[0] = BufferNum?DF_TRANSFER_PAGE_TO_BUFFER_2:DF_TRANSFER_PAGE_TO_BUFFER_1; if(df_PageSize==512) { cmd[1] = (uint8_t)(PageAdr >> 7); cmd[2] = (uint8_t)(PageAdr << 1); }else{ cmd[1] = (uint8_t)(PageAdr >> 6); cmd[2] = (uint8_t)(PageAdr << 2); } cmd[3] = 0; _spi->transfer(cmd, sizeof(cmd)); //initiate the transfer _spi->cs_release(); _spi->cs_assert(); while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high // release SPI bus for use by other sensors _spi->cs_release(); _spi_sem->give(); } void DataFlash_APM2::BufferToPage (uint8_t BufferNum, uint16_t PageAdr, uint8_t wait) { if (!_spi_sem->take(1)) return; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[4]; cmd[0] = BufferNum?DF_BUFFER_2_TO_PAGE_WITH_ERASE:DF_BUFFER_1_TO_PAGE_WITH_ERASE; if(df_PageSize==512) { cmd[1] = (uint8_t)(PageAdr >> 7); cmd[2] = (uint8_t)(PageAdr << 1); }else{ cmd[1] = (uint8_t)(PageAdr >> 6); cmd[2] = (uint8_t)(PageAdr << 2); } cmd[3] = 0; _spi->transfer(cmd, sizeof(cmd)); //initiate the transfer _spi->cs_release(); // Check if we need to wait to write the buffer to memory or we can continue... if (wait) while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high // release SPI bus for use by other sensors _spi_sem->give(); } void DataFlash_APM2::BlockWrite (uint8_t BufferNum, uint16_t IntPageAdr, const void *pHeader, uint8_t hdr_size, const void *pBuffer, uint16_t size) { if (!_spi_sem->take(1)) return; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[] = { (uint8_t)(BufferNum?DF_BUFFER_2_WRITE:DF_BUFFER_1_WRITE), 0, (uint8_t)(IntPageAdr>>8), (uint8_t)(IntPageAdr) }; _spi->transfer(cmd, sizeof(cmd)); // transfer header, if any if (hdr_size != 0) { _spi->transfer((const uint8_t *)pHeader, hdr_size); } // transfer data _spi->transfer((const uint8_t *)pBuffer, size); // release SPI bus for use by other sensors _spi->cs_release(); _spi_sem->give(); } bool DataFlash_APM2::BlockRead(uint8_t BufferNum, uint16_t IntPageAdr, void *pBuffer, uint16_t size) { if (!_spi_sem->take(1)) return false; // activate dataflash command decoder _spi->cs_assert(); if (BufferNum==0) _spi->transfer(DF_BUFFER_1_READ); else _spi->transfer(DF_BUFFER_2_READ); _spi->transfer(0x00); _spi->transfer((uint8_t)(IntPageAdr>>8)); //upper part of internal buffer address _spi->transfer((uint8_t)(IntPageAdr)); //lower part of internal buffer address _spi->transfer(0x00); //don't cares uint8_t *pData = (uint8_t *)pBuffer; while (size--) { *pData++ = _spi->transfer(0x00); } // release SPI bus for use by other sensors _spi->cs_release(); _spi_sem->give(); return true; } uint8_t DataFlash_APM2::BufferRead (uint8_t BufferNum, uint16_t IntPageAdr) { uint8_t tmp; if (!BlockRead(BufferNum, IntPageAdr, &tmp, 1)) { return 0; } return tmp; } // *** END OF INTERNAL FUNCTIONS *** void DataFlash_APM2::PageErase (uint16_t PageAdr) { if (!_spi_sem->take(1)) return; // activate dataflash command decoder _spi->cs_assert(); // Send page erase command _spi->transfer(DF_PAGE_ERASE); if(df_PageSize==512) { _spi->transfer((uint8_t)(PageAdr >> 7)); _spi->transfer((uint8_t)(PageAdr << 1)); }else{ _spi->transfer((uint8_t)(PageAdr >> 6)); _spi->transfer((uint8_t)(PageAdr << 2)); } _spi->transfer(0x00); //initiate flash page erase _spi->cs_release(); while(!ReadStatus()) ; // release SPI bus for use by other sensors _spi_sem->give(); } // erase a block of 8 pages. void DataFlash_APM2::BlockErase(uint16_t BlockAdr) { if (!_spi_sem->take(1)) return; // activate dataflash command decoder _spi->cs_assert(); // Send block erase command _spi->transfer(DF_BLOCK_ERASE); if (df_PageSize==512) { _spi->transfer((uint8_t)(BlockAdr >> 4)); _spi->transfer((uint8_t)(BlockAdr << 4)); } else { _spi->transfer((uint8_t)(BlockAdr >> 3)); _spi->transfer((uint8_t)(BlockAdr << 5)); } _spi->transfer(0x00); //serialDebug("BL Erase, %d\n", BlockAdr); //initiate flash page erase _spi->cs_release(); while(!ReadStatus()) ; // release SPI bus for use by other sensors _spi_sem->give(); } void DataFlash_APM2::ChipErase() { if (!_spi_sem->take(1)) return; //serialDebug("Chip Erase\n"); // activate dataflash command decoder _spi->cs_assert(); // opcodes for chip erase _spi->transfer(DF_CHIP_ERASE_0); _spi->transfer(DF_CHIP_ERASE_1); _spi->transfer(DF_CHIP_ERASE_2); _spi->transfer(DF_CHIP_ERASE_3); //initiate flash page erase _spi->cs_release(); while(!ReadStatus()) { hal.scheduler->delay(1); } // release SPI bus for use by other sensors _spi_sem->give(); }