/// @file GCS.h /// @brief Interface definition for the various Ground Control System // protocols. #pragma once #include #include #include "GCS_MAVLink.h" #include #include #include #include #include "MAVLink_routing.h" #include #include #include #include #include #include #include #include #include #include #include #include #define GCS_DEBUG_SEND_MESSAGE_TIMINGS 0 // check if a message will fit in the payload space available #define PAYLOAD_SIZE(chan, id) (GCS_MAVLINK::packet_overhead_chan(chan)+MAVLINK_MSG_ID_ ## id ## _LEN) #define HAVE_PAYLOAD_SPACE(chan, id) (comm_get_txspace(chan) >= PAYLOAD_SIZE(chan, id)) #define CHECK_PAYLOAD_SIZE(id) if (comm_get_txspace(chan) < packet_overhead()+MAVLINK_MSG_ID_ ## id ## _LEN) return false #define CHECK_PAYLOAD_SIZE2(id) if (!HAVE_PAYLOAD_SPACE(chan, id)) return false // GCS Message ID's /// NOTE: to ensure we never block on sending MAVLink messages /// please keep each MSG_ to a single MAVLink message. If need be /// create new MSG_ IDs for additional messages on the same /// stream enum ap_message : uint8_t { MSG_HEARTBEAT, MSG_ATTITUDE, MSG_LOCATION, MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MEMINFO, MSG_NAV_CONTROLLER_OUTPUT, MSG_CURRENT_WAYPOINT, MSG_VFR_HUD, MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN, MSG_RAW_IMU, MSG_SCALED_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, MSG_SENSOR_OFFSETS, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_SYSTEM_TIME, MSG_SERVO_OUT, MSG_NEXT_MISSION_REQUEST, MSG_NEXT_PARAM, MSG_FENCE_STATUS, MSG_AHRS, MSG_SIMSTATE, MSG_AHRS2, MSG_AHRS3, MSG_HWSTATUS, MSG_WIND, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, MSG_TERRAIN, MSG_BATTERY2, MSG_CAMERA_FEEDBACK, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_MAG_CAL_REPORT, MSG_EKF_STATUS_REPORT, MSG_LOCAL_POSITION, MSG_PID_TUNING, MSG_VIBRATION, MSG_RPM, MSG_WHEEL_DISTANCE, MSG_MISSION_ITEM_REACHED, MSG_POSITION_TARGET_GLOBAL_INT, MSG_ADSB_VEHICLE, MSG_BATTERY_STATUS, MSG_AOA_SSA, MSG_LANDING, MSG_ESC_TELEMETRY, MSG_ORIGIN, MSG_HOME, MSG_NAMED_FLOAT, MSG_EXTENDED_SYS_STATE, MSG_LAST // MSG_LAST must be the last entry in this enum }; // convenience macros for defining which ap_message ids are in which streams: #define MAV_STREAM_ENTRY(stream_name) \ { \ GCS_MAVLINK::stream_name, \ stream_name ## _msgs, \ ARRAY_SIZE(stream_name ## _msgs) \ } #define MAV_STREAM_TERMINATOR { (streams)0, nullptr, 0 } /// /// @class GCS_MAVLINK /// @brief MAVLink transport control class /// class GCS_MAVLINK { public: friend class GCS; GCS_MAVLINK(); void update_receive(uint32_t max_time_us=1000); void update_send(); void init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan); void setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance); void send_message(enum ap_message id); void send_text(MAV_SEVERITY severity, const char *fmt, ...); void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list); void queued_param_send(); void queued_mission_request_send(); // packetReceived is called on any successful decode of a mavlink message virtual void packetReceived(const mavlink_status_t &status, mavlink_message_t &msg); // accessor for uart AP_HAL::UARTDriver *get_uart() { return _port; } virtual uint8_t sysid_my_gcs() const = 0; virtual bool sysid_enforce() const { return false; } static const struct AP_Param::GroupInfo var_info[]; // set to true if this GCS link is active bool initialised; // NOTE! The streams enum below and the // set of AP_Int16 stream rates _must_ be // kept in the same order enum streams : uint8_t { STREAM_RAW_SENSORS, STREAM_EXTENDED_STATUS, STREAM_RC_CHANNELS, STREAM_RAW_CONTROLLER, STREAM_POSITION, STREAM_EXTRA1, STREAM_EXTRA2, STREAM_EXTRA3, STREAM_PARAMS, STREAM_ADSB, NUM_STREAMS }; bool is_high_bandwidth() { return chan == MAVLINK_COMM_0; } // return true if this channel has hardware flow control bool have_flow_control(); bool is_active() const { return GCS_MAVLINK::active_channel_mask() & (1 << (chan-MAVLINK_COMM_0)); } bool is_streaming() const { return GCS_MAVLINK::streaming_channel_mask() & (1 << (chan-MAVLINK_COMM_0)); } mavlink_channel_t get_chan() const { return chan; } uint32_t get_last_heartbeat_time() const { return last_heartbeat_time; }; uint32_t last_heartbeat_time; // milliseconds // last time we got a non-zero RSSI from RADIO_STATUS static uint32_t last_radio_status_remrssi_ms; // mission item index to be sent on queued msg, delayed or not uint16_t mission_item_reached_index = AP_MISSION_CMD_INDEX_NONE; // common send functions void send_heartbeat(void) const; void send_meminfo(void); void send_fence_status() const; void send_power_status(void); void send_battery_status(const AP_BattMonitor &battery, const uint8_t instance) const; bool send_battery_status() const; void send_distance_sensor() const; // send_rangefinder sends only if a downward-facing instance is // found. Rover overrides this! virtual void send_rangefinder() const; void send_proximity() const; virtual void send_nav_controller_output() const = 0; virtual void send_pid_tuning() = 0; void send_ahrs2(); void send_ahrs3(); void send_system_time(); void send_radio_in(); void send_raw_imu(); void send_scaled_pressure_instance(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_boot_ms, float press_abs, float press_diff, int16_t temperature)); void send_scaled_pressure(); void send_scaled_pressure2(); virtual void send_scaled_pressure3(); // allow sub to override this void send_sensor_offsets(); virtual void send_simstate() const; void send_ahrs(); void send_battery2(); #if AP_AHRS_NAVEKF_AVAILABLE void send_opticalflow(); #endif virtual void send_attitude() const; void send_autopilot_version() const; void send_extended_sys_state() const; void send_local_position() const; void send_vfr_hud(); void send_vibration() const; void send_mount_status() const; void send_named_float(const char *name, float value) const; void send_gimbal_report() const; void send_home_position() const; void send_gps_global_origin() const; virtual void send_position_target_global_int() { }; void send_servo_output_raw(); static void send_collision_all(const AP_Avoidance::Obstacle &threat, MAV_COLLISION_ACTION behaviour); void send_accelcal_vehicle_position(uint32_t position); void send_scaled_imu(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_ms, int16_t xacc, int16_t yacc, int16_t zacc, int16_t xgyro, int16_t ygyro, int16_t zgyro, int16_t xmag, int16_t ymag, int16_t zmag)); void send_sys_status(); void send_set_position_target_global_int(uint8_t target_system, uint8_t target_component, const Location& loc); void send_rpm() const; // return a bitmap of active channels. Used by libraries to loop // over active channels to send to all active channels static uint8_t active_channel_mask(void) { return mavlink_active; } // return a bitmap of streaming channels static uint8_t streaming_channel_mask(void) { return chan_is_streaming; } // set a channel as private. Private channels get sent heartbeats, but // don't get broadcast packets or forwarded packets static void set_channel_private(mavlink_channel_t chan); // return true if channel is private static bool is_private(mavlink_channel_t _chan) { return (mavlink_private & (1U<<(unsigned)_chan)) != 0; } // return true if channel is private bool is_private(void) const { return is_private(chan); } /* send a MAVLink message to all components with this vehicle's system id This is a no-op if no routes to components have been learned */ static void send_to_components(const mavlink_message_t* msg) { routing.send_to_components(msg); } /* allow forwarding of packets / heartbeats to be blocked as required by some components to reduce traffic */ static void disable_channel_routing(mavlink_channel_t chan) { routing.no_route_mask |= (1U<<(chan-MAVLINK_COMM_0)); } /* search for a component in the routing table with given mav_type and retrieve it's sysid, compid and channel returns if a matching component is found */ static bool find_by_mavtype(uint8_t mav_type, uint8_t &sysid, uint8_t &compid, mavlink_channel_t &channel) { return routing.find_by_mavtype(mav_type, sysid, compid, channel); } // update signing timestamp on GPS lock static void update_signing_timestamp(uint64_t timestamp_usec); // return current packet overhead for a channel static uint8_t packet_overhead_chan(mavlink_channel_t chan); // alternative protocol function handler FUNCTOR_TYPEDEF(protocol_handler_fn_t, bool, uint8_t, AP_HAL::UARTDriver *); struct stream_entries { const streams stream_id; const ap_message *ap_message_ids; const uint8_t num_ap_message_ids; }; // vehicle subclass cpp files should define this: static const struct stream_entries all_stream_entries[]; virtual uint64_t capabilities() const; protected: virtual bool in_hil_mode() const { return false; } bool mavlink_coordinate_frame_to_location_alt_frame(uint8_t coordinate_frame, Location::AltFrame &frame); // overridable method to check for packet acceptance. Allows for // enforcement of GCS sysid bool accept_packet(const mavlink_status_t &status, mavlink_message_t &msg); virtual AP_AdvancedFailsafe *get_advanced_failsafe() const { return nullptr; }; virtual bool set_mode(uint8_t mode) = 0; void set_ekf_origin(const Location& loc); virtual MAV_MODE base_mode() const = 0; virtual MAV_STATE system_status() const = 0; virtual MAV_VTOL_STATE vtol_state() const { return MAV_VTOL_STATE_UNDEFINED; } virtual MAV_LANDED_STATE landed_state() const { return MAV_LANDED_STATE_UNDEFINED; } bool waypoint_receiving; // currently receiving // the following two variables are only here because of Tracker uint16_t waypoint_request_i; // request index uint16_t waypoint_request_last; // last request index AP_Param * _queued_parameter; ///< next parameter to // be sent in queue mavlink_channel_t chan; uint8_t packet_overhead(void) const { return packet_overhead_chan(chan); } // saveable rate of each stream AP_Int16 streamRates[NUM_STREAMS]; virtual bool persist_streamrates() const { return false; } void handle_request_data_stream(mavlink_message_t *msg); virtual void handle_command_ack(const mavlink_message_t* msg); void handle_set_mode(mavlink_message_t* msg); void handle_command_int(mavlink_message_t* msg); MAV_RESULT handle_command_int_do_set_home(const mavlink_command_int_t &packet); virtual MAV_RESULT handle_command_int_packet(const mavlink_command_int_t &packet); virtual bool set_home_to_current_location(bool lock) = 0; virtual bool set_home(const Location& loc, bool lock) = 0; void handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_request(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg); virtual void handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_count(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg); bool handle_mission_item(mavlink_message_t *msg, AP_Mission &mission); void handle_common_param_message(mavlink_message_t *msg); void handle_param_set(mavlink_message_t *msg); void handle_param_request_list(mavlink_message_t *msg); void handle_param_request_read(mavlink_message_t *msg); virtual bool params_ready() const { return true; } virtual void handle_rc_channels_override(const mavlink_message_t *msg); void handle_system_time_message(const mavlink_message_t *msg); void handle_common_rally_message(mavlink_message_t *msg); void handle_rally_fetch_point(mavlink_message_t *msg); void handle_rally_point(mavlink_message_t *msg); virtual void handle_mount_message(const mavlink_message_t *msg); void handle_fence_message(mavlink_message_t *msg); void handle_param_value(mavlink_message_t *msg); void handle_radio_status(mavlink_message_t *msg, AP_Logger &dataflash, bool log_radio); void handle_serial_control(const mavlink_message_t *msg); void handle_vision_position_delta(mavlink_message_t *msg); void handle_common_message(mavlink_message_t *msg); void handle_set_gps_global_origin(const mavlink_message_t *msg); void handle_setup_signing(const mavlink_message_t *msg); virtual bool should_zero_rc_outputs_on_reboot() const { return false; } MAV_RESULT handle_preflight_reboot(const mavlink_command_long_t &packet); // reset a message interval via mavlink: MAV_RESULT handle_command_set_message_interval(const mavlink_command_long_t &packet); MAV_RESULT handle_command_get_message_interval(const mavlink_command_long_t &packet); bool get_ap_message_interval(ap_message id, uint16_t &interval_ms) const; MAV_RESULT handle_rc_bind(const mavlink_command_long_t &packet); virtual MAV_RESULT handle_flight_termination(const mavlink_command_long_t &packet); void handle_send_autopilot_version(const mavlink_message_t *msg); MAV_RESULT handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet); virtual void send_banner(); void handle_device_op_read(mavlink_message_t *msg); void handle_device_op_write(mavlink_message_t *msg); void send_timesync(); // returns the time a timesync message was most likely received: uint64_t timesync_receive_timestamp_ns() const; // returns a timestamp suitable for packing into the ts1 field of TIMESYNC: uint64_t timesync_timestamp_ns() const; void handle_timesync(mavlink_message_t *msg); struct { int64_t sent_ts1; uint32_t last_sent_ms; const uint16_t interval_ms = 10000; } _timesync_request; void handle_statustext(mavlink_message_t *msg); bool telemetry_delayed() const; virtual uint32_t telem_delay() const = 0; MAV_RESULT handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet); MAV_RESULT handle_command_flash_bootloader(const mavlink_command_long_t &packet); // generally this should not be overridden; Plane overrides it to ensure // failsafe isn't triggered during calibation virtual MAV_RESULT handle_command_preflight_calibration(const mavlink_command_long_t &packet); virtual MAV_RESULT _handle_command_preflight_calibration(const mavlink_command_long_t &packet); virtual MAV_RESULT _handle_command_preflight_calibration_baro(); MAV_RESULT handle_command_preflight_can(const mavlink_command_long_t &packet); void handle_command_long(mavlink_message_t* msg); MAV_RESULT handle_command_accelcal_vehicle_pos(const mavlink_command_long_t &packet); virtual MAV_RESULT handle_command_mount(const mavlink_command_long_t &packet); MAV_RESULT handle_command_mag_cal(const mavlink_command_long_t &packet); virtual MAV_RESULT handle_command_long_packet(const mavlink_command_long_t &packet); MAV_RESULT handle_command_camera(const mavlink_command_long_t &packet); MAV_RESULT handle_command_do_send_banner(const mavlink_command_long_t &packet); MAV_RESULT handle_command_do_set_roi(const mavlink_command_int_t &packet); MAV_RESULT handle_command_do_set_roi(const mavlink_command_long_t &packet); virtual MAV_RESULT handle_command_do_set_roi(const Location &roi_loc); MAV_RESULT handle_command_do_gripper(const mavlink_command_long_t &packet); MAV_RESULT handle_command_do_set_mode(const mavlink_command_long_t &packet); MAV_RESULT handle_command_get_home_position(const mavlink_command_long_t &packet); MAV_RESULT handle_command_do_fence_enable(const mavlink_command_long_t &packet); // vehicle-overridable message send function virtual bool try_send_message(enum ap_message id); virtual void send_global_position_int(); // message sending functions: bool try_send_compass_message(enum ap_message id); bool try_send_mission_message(enum ap_message id); void send_hwstatus(); void handle_data_packet(mavlink_message_t *msg); // these two methods are called after current_loc is updated: virtual int32_t global_position_int_alt() const; virtual int32_t global_position_int_relative_alt() const; virtual float vfr_hud_climbrate() const; virtual float vfr_hud_airspeed() const; virtual int16_t vfr_hud_throttle() const { return 0; } virtual float vfr_hud_alt() const; static constexpr const float magic_force_arm_value = 2989.0f; static constexpr const float magic_force_disarm_value = 21196.0f; private: void log_mavlink_stats(); MAV_RESULT _set_mode_common(const MAV_MODE base_mode, const uint32_t custom_mode); virtual void handleMessage(mavlink_message_t * msg) = 0; MAV_RESULT handle_servorelay_message(const mavlink_command_long_t &packet); bool calibrate_gyros(); /// The stream we are communicating over AP_HAL::UARTDriver *_port; /// Perform queued sending operations /// enum ap_var_type _queued_parameter_type; ///< type of the next // parameter AP_Param::ParamToken _queued_parameter_token; ///AP_Param token for // next() call uint16_t _queued_parameter_index; ///< next queued // parameter's index uint16_t _queued_parameter_count; ///< saved count of // parameters for // queued send uint32_t _queued_parameter_send_time_ms; /// Count the number of reportable parameters. /// /// Not all parameters can be reported via MAVlink. We count the number // that are /// so that we can report to a GCS the number of parameters it should // expect when it /// requests the full set. /// /// @return The number of reportable parameters. /// uint16_t packet_drops; // waypoints uint16_t waypoint_dest_sysid; // where to send requests uint16_t waypoint_dest_compid; // " uint32_t waypoint_timelast_receive; // milliseconds uint32_t waypoint_timelast_request; // milliseconds const uint16_t waypoint_receive_timeout = 8000; // milliseconds // number of extra ms to add to slow things down for the radio uint16_t stream_slowdown_ms; // perf counters AP_HAL::Util::perf_counter_t _perf_packet; AP_HAL::Util::perf_counter_t _perf_update; char _perf_packet_name[16]; char _perf_update_name[16]; // outbound ("deferred message") queue. // "special" messages such as heartbeat, next_param etc are stored // separately to stream-rated messages like AHRS2 etc. If these // were to be stored in buckets then they would be slowed down // based on stream_slowdown, which we have not traditionally done. struct deferred_message_t { const ap_message id; uint16_t interval_ms; uint16_t last_sent_ms; // from AP_HAL::millis16() } deferred_message[2] = { { MSG_HEARTBEAT, }, { MSG_NEXT_PARAM, }, }; // returns index of id in deferred_message[] or -1 if not present int8_t get_deferred_message_index(const ap_message id) const; // returns index of a message in deferred_message[] which should // be sent (or -1 if none to send at the moment) int8_t deferred_message_to_send_index(); // cache of which deferred message should be sent next: int8_t next_deferred_message_to_send_cache = -1; struct deferred_message_bucket_t { Bitmask ap_message_ids{MSG_LAST}; uint16_t interval_ms; uint16_t last_sent_ms; // from AP_HAL::millis16() }; deferred_message_bucket_t deferred_message_bucket[10]; static const uint8_t no_bucket_to_send = -1; static const ap_message no_message_to_send = (ap_message)-1; uint8_t sending_bucket_id = no_bucket_to_send; Bitmask bucket_message_ids_to_send{MSG_LAST}; ap_message next_deferred_bucket_message_to_send(); void find_next_bucket_to_send(); void remove_message_from_bucket(int8_t bucket, ap_message id); // bitmask of IDs the code has spontaneously decided it wants to // send out. Examples include HEARTBEAT (gcs_send_heartbeat) Bitmask pushed_ap_message_ids{MSG_LAST}; // returns true if it is OK to send a message while we are in // delay callback. In particular, when we are doing sensor init // we still send heartbeats. bool should_send_message_in_delay_callback(const ap_message id) const; // if true is returned, interval will contain the default interval for id bool get_default_interval_for_ap_message(const ap_message id, uint16_t &interval) const; // if true is returned, interval will contain the default interval for id bool get_default_interval_for_mavlink_message_id(const uint32_t mavlink_message_id, uint16_t &interval) const; // returns an interval in milliseconds for any ap_message in stream id uint16_t get_interval_for_stream(GCS_MAVLINK::streams id) const; // set an inverval for a specific mavlink message. Returns false // on failure (typically because there is no mapping from that // mavlink ID to an ap_message) bool set_mavlink_message_id_interval(const uint32_t mavlink_id, const uint16_t interval_ms); // map a mavlink ID to an ap_message which, if passed to // try_send_message, will cause a mavlink message with that id to // be emitted. Returns MSG_LAST if no such mapping exists. ap_message mavlink_id_to_ap_message_id(const uint32_t mavlink_id) const; // set the interval at which an ap_message should be emitted (in ms) bool set_ap_message_interval(enum ap_message id, uint16_t interval_ms); // call set_ap_message_interval for each entry in a stream, // the interval being based on the stream's rate void initialise_message_intervals_for_stream(GCS_MAVLINK::streams id); // call initialise_message_intervals_for_stream on every stream: void initialise_message_intervals_from_streamrates(); // boolean that indicated that message intervals have been set // from streamrates: bool deferred_messages_initialised; // return interval deferred message bucket should be sent after. // When sending parameters and waypoints this may be longer than // the interval specified in "deferred" uint16_t get_reschedule_interval_ms(const deferred_message_bucket_t &deferred) const; bool do_try_send_message(const ap_message id); // time when we missed sending a parameter for GCS static uint32_t reserve_param_space_start_ms; // bitmask of what mavlink channels are active static uint8_t mavlink_active; // bitmask of what mavlink channels are private static uint8_t mavlink_private; // bitmask of what mavlink channels are streaming static uint8_t chan_is_streaming; // mavlink routing object static MAVLink_routing routing; static const AP_SerialManager *serialmanager_p; struct pending_param_request { mavlink_channel_t chan; int16_t param_index; char param_name[AP_MAX_NAME_SIZE+1]; }; struct pending_param_reply { mavlink_channel_t chan; float value; enum ap_var_type p_type; int16_t param_index; uint16_t count; char param_name[AP_MAX_NAME_SIZE+1]; }; // queue of pending parameter requests and replies static ObjectBuffer param_requests; static ObjectBuffer param_replies; // have we registered the IO timer callback? static bool param_timer_registered; // IO timer callback for parameters void param_io_timer(void); uint8_t send_parameter_async_replies(); void send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const; virtual bool handle_guided_request(AP_Mission::Mission_Command &cmd) = 0; virtual void handle_change_alt_request(AP_Mission::Mission_Command &cmd) = 0; void handle_common_mission_message(mavlink_message_t *msg); void handle_vicon_position_estimate(mavlink_message_t *msg); void handle_vision_position_estimate(mavlink_message_t *msg); void handle_global_vision_position_estimate(mavlink_message_t *msg); void handle_att_pos_mocap(mavlink_message_t *msg); void handle_common_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw, const uint16_t payload_size); void log_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw); void lock_channel(mavlink_channel_t chan, bool lock); /* correct an offboard timestamp in microseconds to a local time since boot in milliseconds */ uint32_t correct_offboard_timestamp_usec_to_ms(uint64_t offboard_usec, uint16_t payload_size); mavlink_signing_t signing; static mavlink_signing_streams_t signing_streams; static uint32_t last_signing_save_ms; static StorageAccess _signing_storage; static bool signing_key_save(const struct SigningKey &key); static bool signing_key_load(struct SigningKey &key); void load_signing_key(void); bool signing_enabled(void) const; static void save_signing_timestamp(bool force_save_now); // alternative protocol handler support struct { GCS_MAVLINK::protocol_handler_fn_t handler; uint32_t last_mavlink_ms; uint32_t last_alternate_ms; bool active; } alternative; JitterCorrection lag_correction; // we cache the current location and send it even if the AHRS has // no idea where we are: struct Location global_position_current_loc; void zero_rc_outputs(); uint8_t last_tx_seq; uint16_t send_packet_count; #if GCS_DEBUG_SEND_MESSAGE_TIMINGS struct { uint32_t longest_time_us; ap_message longest_id; uint32_t no_space_for_message; uint16_t statustext_last_sent_ms; uint32_t behind; uint16_t fnbts_maxtime; uint32_t max_retry_deferred_body_us; uint8_t max_retry_deferred_body_type; } try_send_message_stats; uint16_t max_slowdown_ms; #endif uint32_t last_mavlink_stats_logged; }; /// @class GCS /// @brief global GCS object class GCS { public: GCS() { if (_singleton == nullptr) { _singleton = this; } else { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL // this is a serious problem, but we don't need to kill a // real vehicle AP_HAL::panic("GCS must be singleton"); #endif } }; static class GCS *get_singleton() { return _singleton; } virtual uint32_t custom_mode() const = 0; virtual MAV_TYPE frame_type() const = 0; virtual const char* frame_string() const { return nullptr; } void send_text(MAV_SEVERITY severity, const char *fmt, ...); void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list); virtual void send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text); void service_statustext(void); virtual GCS_MAVLINK &chan(const uint8_t ofs) = 0; virtual const GCS_MAVLINK &chan(const uint8_t ofs) const = 0; virtual uint8_t num_gcs() const = 0; void send_message(enum ap_message id); void send_mission_item_reached_message(uint16_t mission_index); void send_named_float(const char *name, float value) const; void send_parameter_value(const char *param_name, ap_var_type param_type, float param_value); void update_send(); void update_receive(); virtual void setup_uarts(AP_SerialManager &serial_manager); bool out_of_time() const { return _out_of_time; } void set_out_of_time(bool val) { _out_of_time = val; } // frsky backend AP_Frsky_Telem frsky; // install an alternative protocol handler bool install_alternative_protocol(mavlink_channel_t chan, GCS_MAVLINK::protocol_handler_fn_t handler); // get the VFR_HUD throttle int16_t get_hud_throttle(void) const { return num_gcs()>0?chan(0).vfr_hud_throttle():0; } // update uart pass-thru void update_passthru(); void get_sensor_status_flags(uint32_t &present, uint32_t &enabled, uint32_t &health); virtual bool vehicle_initialised() const { return true; } protected: uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; virtual void update_sensor_status_flags(void) = 0; private: static GCS *_singleton; struct statustext_t { uint8_t bitmask; mavlink_statustext_t msg; }; #if HAL_CPU_CLASS <= HAL_CPU_CLASS_150 || CONFIG_HAL_BOARD == HAL_BOARD_SITL static const uint8_t _status_capacity = 5; #else static const uint8_t _status_capacity = 30; #endif // a lock for the statustext queue, to make it safe to use send_text() // from multiple threads HAL_Semaphore _statustext_sem; // queue of outgoing statustext messages ObjectArray _statustext_queue{_status_capacity}; // true if we are running short on time in our main loop bool _out_of_time; // handle passthru between two UARTs struct { bool enabled; bool timer_installed; AP_HAL::UARTDriver *port1; AP_HAL::UARTDriver *port2; uint32_t start_ms; uint32_t last_ms; uint32_t last_port1_data_ms; uint8_t timeout_s; HAL_Semaphore sem; } _passthru; // timer called to implement pass-thru void passthru_timer(); }; GCS &gcs();