#include "GCS_Plane.h" #include "Plane.h" // update error mask of sensors and subsystems. The mask // uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set // then it indicates that the sensor or subsystem is present but // not functioning correctly. void GCS_Plane::update_sensor_status_flags(void) { // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (plane.g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } const AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed && airspeed->enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } const AP_GPS &gps = AP::gps(); if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED const OpticalFlow *optflow = AP::opticalflow(); if (optflow && optflow->enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (plane.geofence_present()) { control_sensors_present |= MAV_SYS_STATUS_GEOFENCE; } if (plane.have_reverse_thrust()) { control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR; } const AP_Logger &logger = AP::logger(); if (logger.logging_present()) { // primary logging only (usually File) control_sensors_present |= MAV_SYS_STATUS_LOGGING; } // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence, motor, and battery output which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING & ~MAV_SYS_STATUS_SENSOR_BATTERY); if (airspeed && airspeed->enabled() && airspeed->use()) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (plane.geofence_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE; } if (logger.logging_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; } const AP_BattMonitor &battery = AP::battery(); if (battery.num_instances() > 0) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY; } switch (plane.control_mode) { case MANUAL: break; case ACRO: case QACRO: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control break; case STABILIZE: case FLY_BY_WIRE_A: case AUTOTUNE: case QSTABILIZE: case QHOVER: case QLAND: case QLOITER: case QAUTOTUNE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case FLY_BY_WIRE_B: case CRUISE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case TRAINING: if (!plane.training_manual_roll || !plane.training_manual_pitch) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation } break; case AUTO: case RTL: case LOITER: case AVOID_ADSB: case GUIDED: case CIRCLE: case QRTL: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control break; case INITIALISING: break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } // default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy. control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_3D_MAG | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE); control_sensors_health |= MAV_SYS_STATUS_GEOFENCE; AP_AHRS &ahrs = AP::ahrs(); if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } const AP_InertialSensor &ins = AP::ins(); if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) { // trying to use EKF without properly calibrated accelerometers control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } const AP_Baro &barometer = AP::baro(); if (barometer.all_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } const Compass &compass = AP::compass(); if (plane.g.compass_enabled && compass.healthy() && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.is_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow && optflow->healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (airspeed && airspeed->all_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } #if GEOFENCE_ENABLED if (plane.geofence_breached()) { control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE; } #endif if (logger.logging_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; } if (millis() - plane.failsafe.last_valid_rc_ms < 200) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } else { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } #if AP_TERRAIN_AVAILABLE switch (plane.terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif const RangeFinder *rangefinder = RangeFinder::get_singleton(); if (rangefinder && rangefinder->has_orientation(ROTATION_PITCH_270)) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (plane.g.rangefinder_landing) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } if (rangefinder->has_data_orient(ROTATION_PITCH_270)) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } if (plane.have_reverse_thrust() && SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0) { control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR; control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR; } if (AP_Notify::flags.initialising) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } if (!plane.battery.healthy() || plane.battery.has_failsafed()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY; } }