// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // Functions called from the setup menu static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); static int8_t setup_motors (uint8_t argc, const Menu::arg *argv); static int8_t setup_accel (uint8_t argc, const Menu::arg *argv); static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv); static int8_t setup_frame (uint8_t argc, const Menu::arg *argv); static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv); static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); static int8_t setup_tune (uint8_t argc, const Menu::arg *argv); static int8_t setup_range (uint8_t argc, const Menu::arg *argv); //static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv); static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv); static int8_t setup_show (uint8_t argc, const Menu::arg *argv); #if FRAME_CONFIG == HELI_FRAME static int8_t setup_heli (uint8_t argc, const Menu::arg *argv); static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv); #endif // Command/function table for the setup menu const struct Menu::command setup_menu_commands[] PROGMEM = { // command function called // ======= =============== {"erase", setup_erase}, {"reset", setup_factory}, {"radio", setup_radio}, {"frame", setup_frame}, {"motors", setup_motors}, {"level", setup_accel}, {"accel", setup_accel_scale}, {"modes", setup_flightmodes}, {"battery", setup_batt_monitor}, {"sonar", setup_sonar}, {"compass", setup_compass}, {"tune", setup_tune}, {"range", setup_range}, // {"offsets", setup_mag_offset}, {"declination", setup_declination}, {"optflow", setup_optflow}, #if FRAME_CONFIG == HELI_FRAME {"heli", setup_heli}, {"gyro", setup_gyro}, #endif {"show", setup_show} }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. static int8_t setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance Serial.printf_P(PSTR("Setup Mode\n\n\n")); //"\n" //"IMPORTANT: if you have not previously set this system up, use the\n" //"'reset' command to initialize the EEPROM to sensible default values\n" //"and then the 'radio' command to configure for your radio.\n" //"\n")); if(g.rc_1.radio_min >= 1300){ delay(1000); Serial.printf_P(PSTR("\n!Warning, radio not configured!")); delay(1000); Serial.printf_P(PSTR("\n Type 'radio' now.\n\n")); } // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); return 0; } // Print the current configuration. // Called by the setup menu 'show' command. static int8_t setup_show(uint8_t argc, const Menu::arg *argv) { // clear the area print_blanks(8); report_version(); report_radio(); report_frame(); report_batt_monitor(); report_sonar(); //report_gains(); //report_xtrack(); //report_throttle(); report_flight_modes(); report_imu(); report_compass(); report_optflow(); #if FRAME_CONFIG == HELI_FRAME report_heli(); report_gyro(); #endif AP_Param::show_all(); return(0); } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. static int8_t setup_factory(uint8_t argc, const Menu::arg *argv) { int c; Serial.printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n")); do { c = Serial.read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); AP_Param::erase_all(); Serial.printf_P(PSTR("\nReboot APM")); delay(1000); //default_gains(); for (;;) { } // note, cannot actually return here return(0); } // Perform radio setup. // Called by the setup menu 'radio' command. static int8_t setup_radio(uint8_t argc, const Menu::arg *argv) { Serial.println("\n\nRadio Setup:"); uint8_t i; for(i = 0; i < 100;i++){ delay(20); read_radio(); } if(g.rc_1.radio_in < 500){ while(1){ //Serial.printf_P(PSTR("\nNo radio; Check connectors.")); delay(1000); // stop here } } g.rc_1.radio_min = g.rc_1.radio_in; g.rc_2.radio_min = g.rc_2.radio_in; g.rc_3.radio_min = g.rc_3.radio_in; g.rc_4.radio_min = g.rc_4.radio_in; g.rc_5.radio_min = g.rc_5.radio_in; g.rc_6.radio_min = g.rc_6.radio_in; g.rc_7.radio_min = g.rc_7.radio_in; g.rc_8.radio_min = g.rc_8.radio_in; g.rc_1.radio_max = g.rc_1.radio_in; g.rc_2.radio_max = g.rc_2.radio_in; g.rc_3.radio_max = g.rc_3.radio_in; g.rc_4.radio_max = g.rc_4.radio_in; g.rc_5.radio_max = g.rc_5.radio_in; g.rc_6.radio_max = g.rc_6.radio_in; g.rc_7.radio_max = g.rc_7.radio_in; g.rc_8.radio_max = g.rc_8.radio_in; g.rc_1.radio_trim = g.rc_1.radio_in; g.rc_2.radio_trim = g.rc_2.radio_in; g.rc_4.radio_trim = g.rc_4.radio_in; // 3 is not trimed g.rc_5.radio_trim = 1500; g.rc_6.radio_trim = 1500; g.rc_7.radio_trim = 1500; g.rc_8.radio_trim = 1500; Serial.printf_P(PSTR("\nMove all controls to extremes. Enter to save: ")); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); g.rc_1.update_min_max(); g.rc_2.update_min_max(); g.rc_3.update_min_max(); g.rc_4.update_min_max(); g.rc_5.update_min_max(); g.rc_6.update_min_max(); g.rc_7.update_min_max(); g.rc_8.update_min_max(); if(Serial.available() > 0){ delay(20); Serial.flush(); g.rc_1.save_eeprom(); g.rc_2.save_eeprom(); g.rc_3.save_eeprom(); g.rc_4.save_eeprom(); g.rc_5.save_eeprom(); g.rc_6.save_eeprom(); g.rc_7.save_eeprom(); g.rc_8.save_eeprom(); print_done(); break; } } report_radio(); return(0); } static int8_t setup_motors(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR( "Now connect the main lipo and follow the instruction on the wiki for your frame setup.\n" "For security remember to disconnect the main lipo after the test, then hit any key to exit.\n" "Any key to exit.\n")); while(1){ delay(20); read_radio(); motors.output_test(); if(Serial.available() > 0){ g.esc_calibrate.set_and_save(0); return(0); } } } static int8_t setup_accel(uint8_t argc, const Menu::arg *argv) { imu.init(IMU::COLD_START, delay, flash_leds, &timer_scheduler); imu.init_accel(delay, flash_leds); print_accel_offsets(); report_imu(); return(0); } static int8_t setup_accel_scale(uint8_t argc, const Menu::arg *argv) { #if CONFIG_ADC == ENABLED int8_t accel_num; float accel_avg = 0; if (!strcmp_P(argv[1].str, PSTR("x"))) { accel_num = 4; }else if (!strcmp_P(argv[1].str, PSTR("y"))) { accel_num = 5; }else if (!strcmp_P(argv[1].str, PSTR("z"))) { accel_num = 6; }else{ Serial.printf_P(PSTR("x, y, or z\n")); return 0; } print_hit_enter(); Serial.printf_P(PSTR("ADC\n")); adc.Init(&timer_scheduler); // APM ADC library initialization int16_t low, high; delay(1000); accel_avg = adc.Ch(accel_num); low = high = accel_avg; while(1){ delay(50); accel_avg = accel_avg * .95 + adc.Ch(accel_num) * .05; if(accel_avg > high) high = ceil(accel_avg); if(accel_avg < low) low = floor(accel_avg); Serial.printf_P(PSTR("%1.2f, %d, %d\n"), accel_avg, low, high); if(Serial.available() > 0){ if(wait_for_yes()){ if(accel_num == 4){ ins._x_high = high; ins._x_low = low; ins._x_high.save(); ins._x_low.save(); }else if(accel_num == 5){ ins._y_high = high; ins._y_low = low; ins._y_high.save(); ins._y_low.save(); }else{ ins._z_high = high; ins._z_low = low; ins._z_high.save(); ins._z_low.save(); } print_done(); } return (0); } } #else return 0; #endif // CONFIG_ADC } static int8_t setup_frame(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("x"))) { g.frame_orientation.set_and_save(X_FRAME); } else if (!strcmp_P(argv[1].str, PSTR("p"))) { g.frame_orientation.set_and_save(PLUS_FRAME); } else if (!strcmp_P(argv[1].str, PSTR("+"))) { g.frame_orientation.set_and_save(PLUS_FRAME); } else if (!strcmp_P(argv[1].str, PSTR("v"))) { g.frame_orientation.set_and_save(V_FRAME); }else{ Serial.printf_P(PSTR("\nOp:[x,+,v]\n")); report_frame(); return 0; } report_frame(); return 0; } static int8_t setup_flightmodes(uint8_t argc, const Menu::arg *argv) { byte _switchPosition = 0; byte _oldSwitchPosition = 0; int8_t mode = 0; Serial.printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n")); print_hit_enter(); while(1){ delay(20); read_radio(); _switchPosition = readSwitch(); // look for control switch change if (_oldSwitchPosition != _switchPosition){ mode = flight_modes[_switchPosition]; mode = constrain(mode, 0, NUM_MODES-1); // update the user print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); // Remember switch position _oldSwitchPosition = _switchPosition; } // look for stick input if (abs(g.rc_1.control_in) > 3000){ mode++; if(mode >= NUM_MODES) mode = 0; // save new mode flight_modes[_switchPosition] = mode; // print new mode print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); delay(500); } // look for stick input if (g.rc_4.control_in > 3000){ g.simple_modes |= (1<<_switchPosition); // print new mode print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); delay(500); } // look for stick input if (g.rc_4.control_in < -3000){ g.simple_modes &= ~(1<<_switchPosition); // print new mode print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); delay(500); } // escape hatch if(Serial.available() > 0){ for (mode = 0; mode < 6; mode++) flight_modes[mode].save(); g.simple_modes.save(); print_done(); report_flight_modes(); return (0); } } } static int8_t setup_declination(uint8_t argc, const Menu::arg *argv) { compass.set_declination(radians(argv[1].f)); report_compass(); return 0; } static int8_t setup_tune(uint8_t argc, const Menu::arg *argv) { g.radio_tuning.set_and_save(argv[1].i); //g.radio_tuning_high.set_and_save(1000); //g.radio_tuning_low.set_and_save(0); report_tuning(); return 0; } static int8_t setup_range(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n")); g.radio_tuning_low.set_and_save(argv[1].i); g.radio_tuning_high.set_and_save(argv[2].i); report_tuning(); return 0; } static int8_t setup_erase(uint8_t argc, const Menu::arg *argv) { zero_eeprom(); return 0; } static int8_t setup_compass(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { g.compass_enabled.set_and_save(true); init_compass(); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { clear_offsets(); g.compass_enabled.set_and_save(false); }else{ Serial.printf_P(PSTR("\nOp:[on,off]\n")); report_compass(); return 0; } g.compass_enabled.save(); report_compass(); return 0; } static int8_t setup_batt_monitor(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("off"))) { g.battery_monitoring.set_and_save(0); } else if(argv[1].i > 0 && argv[1].i <= 4){ g.battery_monitoring.set_and_save(argv[1].i); } else { Serial.printf_P(PSTR("\nOp: off, 3-4")); } report_batt_monitor(); return 0; } static int8_t setup_sonar(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { g.sonar_enabled.set_and_save(true); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.sonar_enabled.set_and_save(false); } else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) { g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on g.sonar_type.set_and_save(argv[1].i); }else{ Serial.printf_P(PSTR("\nOp:[on, off, 0-3]\n")); report_sonar(); return 0; } report_sonar(); return 0; } #if FRAME_CONFIG == HELI_FRAME // Perform heli setup. // Called by the setup menu 'radio' command. static int8_t setup_heli(uint8_t argc, const Menu::arg *argv) { uint8_t active_servo = 0; int value = 0; int temp; int state = 0; // 0 = set rev+pos, 1 = capture min/max int max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0; // initialise swash plate motors.init_swash(); // source swash plate movements directly from radio motors.servo_manual = true; // display initial settings report_heli(); // display help Serial.printf_P(PSTR("Instructions:")); print_divider(); Serial.printf_P(PSTR("\td\t\tdisplay settings\n")); Serial.printf_P(PSTR("\t1~4\t\tselect servo\n")); Serial.printf_P(PSTR("\ta or z\t\tmove mid up/down\n")); Serial.printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n")); Serial.printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n")); Serial.printf_P(PSTR("\tp\tset pos (i.e. p0 = front, p90 = right)\n")); Serial.printf_P(PSTR("\tr\t\treverse servo\n")); Serial.printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n")); Serial.printf_P(PSTR("\tt\tset trim (-500 ~ 500)\n")); Serial.printf_P(PSTR("\tx\t\texit & save\n")); // start capturing while( value != 'x' ) { // read radio although we don't use it yet read_radio(); // allow swash plate to move motors.output_armed(); // record min/max if( state == 1 ) { if( abs(g.rc_1.control_in) > max_roll ) max_roll = abs(g.rc_1.control_in); if( abs(g.rc_2.control_in) > max_pitch ) max_pitch = abs(g.rc_2.control_in); if( g.rc_3.radio_out < min_collective ) min_collective = g.rc_3.radio_out; if( g.rc_3.radio_out > max_collective ) max_collective = g.rc_3.radio_out; min_tail = min(g.rc_4.radio_out, min_tail); max_tail = max(g.rc_4.radio_out, max_tail); } if( Serial.available() ) { value = Serial.read(); // process the user's input switch( value ) { case '1': active_servo = CH_1; break; case '2': active_servo = CH_2; break; case '3': active_servo = CH_3; break; case '4': active_servo = CH_4; break; case 'a': case 'A': heli_get_servo(active_servo)->radio_trim += 10; break; case 'c': case 'C': if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) { motors.collective_mid = g.rc_3.radio_out; Serial.printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid); } break; case 'd': case 'D': // display settings report_heli(); break; case 'm': case 'M': if( state == 0 ) { state = 1; // switch to capture min/max mode Serial.printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n")); // reset servo ranges motors.roll_max = motors.pitch_max = 4500; motors.collective_min = 1000; motors.collective_max = 2000; motors._servo_4->radio_min = 1000; motors._servo_4->radio_max = 2000; // set sensible values in temp variables max_roll = abs(g.rc_1.control_in); max_pitch = abs(g.rc_2.control_in); min_collective = 2000; max_collective = 1000; min_tail = max_tail = abs(g.rc_4.radio_out); }else{ state = 0; // switch back to normal mode // double check values aren't totally terrible if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 ) Serial.printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail); else{ motors.roll_max = max_roll; motors.pitch_max = max_pitch; motors.collective_min = min_collective; motors.collective_max = max_collective; motors._servo_4->radio_min = min_tail; motors._servo_4->radio_max = max_tail; // reinitialise swash motors.init_swash(); // display settings report_heli(); } } break; case 'p': case 'P': temp = read_num_from_serial(); if( temp >= -360 && temp <= 360 ) { if( active_servo == CH_1 ) motors.servo1_pos = temp; if( active_servo == CH_2 ) motors.servo2_pos = temp; if( active_servo == CH_3 ) motors.servo3_pos = temp; motors.init_swash(); Serial.printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp); } break; case 'r': case 'R': heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse()); break; case 't': case 'T': temp = read_num_from_serial(); if( temp > 1000 ) temp -= 1500; if( temp > -500 && temp < 500 ) { heli_get_servo(active_servo)->radio_trim = 1500 + temp; motors.init_swash(); Serial.printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp); } break; case 'u': case 'U': temp = 0; // delay up to 2 seconds for servo type from user while( !Serial.available() && temp < 20 ) { temp++; delay(100); } if( Serial.available() ) { value = Serial.read(); if( value == 'a' || value == 'A' ) { g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS); //motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately Serial.printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed); } if( value == 'd' || value == 'D' ) { g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS); //motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately Serial.printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed); } } break; case 'z': case 'Z': heli_get_servo(active_servo)->radio_trim -= 10; break; } } delay(20); } // display final settings report_heli(); // save to eeprom motors._servo_1->save_eeprom(); motors._servo_2->save_eeprom(); motors._servo_3->save_eeprom(); motors._servo_4->save_eeprom(); motors.servo1_pos.save(); motors.servo2_pos.save(); motors.servo3_pos.save(); motors.roll_max.save(); motors.pitch_max.save(); motors.collective_min.save(); motors.collective_max.save(); motors.collective_mid.save(); // return swash plate movements to attitude controller motors.servo_manual = false; return(0); } // setup for external tail gyro (for heli only) static int8_t setup_gyro(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { motors.ext_gyro_enabled.set_and_save(true); // optionally capture the gain if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) { motors.ext_gyro_gain = argv[2].i; motors.ext_gyro_gain.save(); } } else if (!strcmp_P(argv[1].str, PSTR("off"))) { motors.ext_gyro_enabled.set_and_save(false); // capture gain if user simply provides a number } else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) { motors.ext_gyro_enabled.set_and_save(true); motors.ext_gyro_gain = argv[1].i; motors.ext_gyro_gain.save(); }else{ Serial.printf_P(PSTR("\nOp:[on, off] gain\n")); } report_gyro(); return 0; } #endif // FRAME_CONFIG == HELI static void clear_offsets() { Vector3f _offsets(0.0,0.0,0.0); compass.set_offsets(_offsets); compass.save_offsets(); } /*static int8_t setup_mag_offset(uint8_t argc, const Menu::arg *argv) { Vector3f _offsets; if (!strcmp_P(argv[1].str, PSTR("c"))) { clear_offsets(); report_compass(); return (0); } print_hit_enter(); init_compass(); int _min[3] = {0,0,0}; int _max[3] = {0,0,0}; compass.read(); while(1){ delay(50); float heading; compass.read(); heading = compass.calculate_heading(0,0); // roll = 0, pitch = 0 if(compass.mag_x < _min[0]) _min[0] = compass.mag_x; if(compass.mag_y < _min[1]) _min[1] = compass.mag_y; if(compass.mag_z < _min[2]) _min[2] = compass.mag_z; // capture max if(compass.mag_x > _max[0]) _max[0] = compass.mag_x; if(compass.mag_y > _max[1]) _max[1] = compass.mag_y; if(compass.mag_z > _max[2]) _max[2] = compass.mag_z; // calculate offsets _offsets.x = (float)(_max[0] + _min[0]) / -2; _offsets.y = (float)(_max[1] + _min[1]) / -2; _offsets.z = (float)(_max[2] + _min[2]) / -2; // display all to user Serial.printf_P(PSTR("Heading: %u, \t (%d, %d, %d), (%4.4f, %4.4f, %4.4f)\n"), (uint16_t)(wrap_360(ToDeg(heading) * 100)) /100, compass.mag_x, compass.mag_y, compass.mag_z, _offsets.x, _offsets.y, _offsets.z); if(Serial.available() > 1){ compass.set_offsets(_offsets); //compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z); report_compass(); return 0; } } return 0; } */ static int8_t setup_optflow(uint8_t argc, const Menu::arg *argv) { #ifdef OPTFLOW_ENABLED if (!strcmp_P(argv[1].str, PSTR("on"))) { g.optflow_enabled = true; init_optflow(); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.optflow_enabled = false; }else{ Serial.printf_P(PSTR("\nOp:[on, off]\n")); report_optflow(); return 0; } g.optflow_enabled.save(); report_optflow(); #endif return 0; } /***************************************************************************/ // CLI reports /***************************************************************************/ static void report_batt_monitor() { Serial.printf_P(PSTR("\nBatt Mon:\n")); print_divider(); if(g.battery_monitoring == 0) print_enabled(false); if(g.battery_monitoring == 3) Serial.printf_P(PSTR("volts")); if(g.battery_monitoring == 4) Serial.printf_P(PSTR("volts and cur")); print_blanks(2); } static void report_wp(byte index = 255) { if(index == 255){ for(byte i = 0; i < g.command_total; i++){ struct Location temp = get_cmd_with_index(i); print_wp(&temp, i); } }else{ struct Location temp = get_cmd_with_index(index); print_wp(&temp, index); } } static void report_sonar() { g.sonar_enabled.load(); g.sonar_type.load(); Serial.printf_P(PSTR("Sonar\n")); print_divider(); print_enabled(g.sonar_enabled.get()); Serial.printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type); print_blanks(2); } static void report_frame() { Serial.printf_P(PSTR("Frame\n")); print_divider(); #if FRAME_CONFIG == QUAD_FRAME Serial.printf_P(PSTR("Quad frame\n")); #elif FRAME_CONFIG == TRI_FRAME Serial.printf_P(PSTR("TRI frame\n")); #elif FRAME_CONFIG == HEXA_FRAME Serial.printf_P(PSTR("Hexa frame\n")); #elif FRAME_CONFIG == Y6_FRAME Serial.printf_P(PSTR("Y6 frame\n")); #elif FRAME_CONFIG == OCTA_FRAME Serial.printf_P(PSTR("Octa frame\n")); #elif FRAME_CONFIG == HELI_FRAME Serial.printf_P(PSTR("Heli frame\n")); #endif #if FRAME_CONFIG != HELI_FRAME if(g.frame_orientation == X_FRAME) Serial.printf_P(PSTR("X mode\n")); else if(g.frame_orientation == PLUS_FRAME) Serial.printf_P(PSTR("+ mode\n")); else if(g.frame_orientation == V_FRAME) Serial.printf_P(PSTR("V mode\n")); #endif print_blanks(2); } static void report_radio() { Serial.printf_P(PSTR("Radio\n")); print_divider(); // radio print_radio_values(); print_blanks(2); } static void report_imu() { Serial.printf_P(PSTR("IMU\n")); print_divider(); print_gyro_offsets(); print_accel_offsets(); print_blanks(2); } static void report_compass() { Serial.printf_P(PSTR("Compass\n")); print_divider(); print_enabled(g.compass_enabled); // mag declination Serial.printf_P(PSTR("Mag Dec: %4.4f\n"), degrees(compass.get_declination())); Vector3f offsets = compass.get_offsets(); // mag offsets Serial.printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f"), offsets.x, offsets.y, offsets.z); print_blanks(2); } static void report_flight_modes() { Serial.printf_P(PSTR("Flight modes\n")); print_divider(); for(int i = 0; i < 6; i++ ){ print_switch(i, flight_modes[i], (g.simple_modes & (1<radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse()); Serial.printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse()); Serial.printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse()); Serial.printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse()); Serial.printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max); Serial.printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max); Serial.printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max); // calculate and print servo rate Serial.printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed); print_blanks(2); } static void report_gyro() { Serial.printf_P(PSTR("Gyro:\n")); print_divider(); print_enabled( motors.ext_gyro_enabled ); if( motors.ext_gyro_enabled ) Serial.printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain); print_blanks(2); } #endif // FRAME_CONFIG == HELI_FRAME /***************************************************************************/ // CLI utilities /***************************************************************************/ /*static void print_PID(PI * pid) { Serial.printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"), pid->kP(), pid->kI(), (long)pid->imax()); } */ static void print_radio_values() { Serial.printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max); Serial.printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max); Serial.printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max); Serial.printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max); Serial.printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max); Serial.printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max); Serial.printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max); //Serial.printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max); } static void print_switch(byte p, byte m, bool b) { Serial.printf_P(PSTR("Pos %d:\t"),p); Serial.print(flight_mode_strings[m]); Serial.printf_P(PSTR(",\t\tSimple: ")); if(b) Serial.printf_P(PSTR("ON\n")); else Serial.printf_P(PSTR("OFF\n")); } static void print_done() { Serial.printf_P(PSTR("\nSaved\n")); } static void zero_eeprom(void) { byte b = 0; Serial.printf_P(PSTR("\nErasing EEPROM\n")); for (int i = 0; i < EEPROM_MAX_ADDR; i++) { eeprom_write_byte((uint8_t *) i, b); } Serial.printf_P(PSTR("done\n")); } static void print_accel_offsets(void) { Serial.printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\n"), (float)imu.ax(), // Pitch (float)imu.ay(), // Roll (float)imu.az()); // YAW } static void print_gyro_offsets(void) { Serial.printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"), (float)imu.gx(), (float)imu.gy(), (float)imu.gz()); } #if FRAME_CONFIG == HELI_FRAME static RC_Channel * heli_get_servo(int servo_num){ if( servo_num == CH_1 ) return motors._servo_1; if( servo_num == CH_2 ) return motors._servo_2; if( servo_num == CH_3 ) return motors._servo_3; if( servo_num == CH_4 ) return motors._servo_4; return NULL; } // Used to read integer values from the serial port static int read_num_from_serial() { byte index = 0; byte timeout = 0; char data[5] = ""; do { if (Serial.available() == 0) { delay(10); timeout++; }else{ data[index] = Serial.read(); timeout = 0; index++; } }while (timeout < 5 && index < 5); return atoi(data); } #endif #endif // CLI_ENABLED static void print_blanks(int num) { while(num > 0){ num--; Serial.println(""); } } static bool wait_for_yes() { int c; Serial.flush(); Serial.printf_P(PSTR("Y to save\n")); do { c = Serial.read(); } while (-1 == c); if (('y' == c) || ('Y' == c)) return true; else return false; } static void print_divider(void) { for (int i = 0; i < 40; i++) { Serial.print("-"); } Serial.println(""); } static void print_enabled(boolean b) { if(b) Serial.printf_P(PSTR("en")); else Serial.printf_P(PSTR("dis")); Serial.printf_P(PSTR("abled\n")); } static void init_esc() { motors.enable(); motors.armed(true); while(1){ read_radio(); delay(100); dancing_light(); motors.throttle_pass_through(); } } static void print_wp(struct Location *cmd, byte index) { float t1 = (float)cmd->lat / t7; float t2 = (float)cmd->lng / t7; Serial.printf_P(PSTR("cmd#: %d id:%d op:%d p1:%d p2:%ld p3:%4.7f p4:%4.7f \n"), (int)index, (int)cmd->id, (int)cmd->options, (int)cmd->p1, (long)cmd->alt, t1, t2); } static void report_gps() { Serial.printf_P(PSTR("\nGPS\n")); print_divider(); print_enabled(GPS_enabled); print_blanks(2); } static void report_version() { Serial.printf_P(PSTR("FW Ver: %d\n"),(int)g.format_version.get()); #if QUATERNION_ENABLE == ENABLED Serial.printf_P(PSTR("Quaternion test\n")); #endif print_divider(); print_blanks(2); } static void report_tuning() { Serial.printf_P(PSTR("\nTUNE:\n")); print_divider(); if (g.radio_tuning == 0){ print_enabled(g.radio_tuning.get()); }else{ float low = (float)g.radio_tuning_low.get() / 1000; float high = (float)g.radio_tuning_high.get() / 1000; Serial.printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high); } print_blanks(2); }