/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include #include #include "Util.h" #include #include "ToneAlarm.h" #include "RCOutput.h" #include "hwdef/common/stm32_util.h" #include "hwdef/common/flash.h" #include #if HAL_WITH_IO_MCU #include #include extern AP_IOMCU iomcu; #endif extern const AP_HAL::HAL& hal; using namespace ChibiOS; #if CH_CFG_USE_HEAP == TRUE /** how much free memory do we have in bytes. */ uint32_t Util::available_memory(void) { // from malloc.c in hwdef return mem_available(); } /* Special Allocation Routines */ void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type) { if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) { return malloc_dma(size); } else if (mem_type == AP_HAL::Util::MEM_FAST) { return try_alloc_from_ccm_ram(size); } else { return calloc(1, size); } } void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type) { if (ptr != NULL) { chHeapFree(ptr); } } void* Util::try_alloc_from_ccm_ram(size_t size) { void *ret = malloc_ccm(size); if (ret == nullptr) { //we failed to allocate from CCM so we are going to try common SRAM ret = calloc(1, size); } return ret; } #endif // CH_CFG_USE_HEAP /* get safety switch state */ Util::safety_state Util::safety_switch_state(void) { #if HAL_USE_PWM == TRUE return ((RCOutput *)hal.rcout)->_safety_switch_state(); #else return SAFETY_NONE; #endif } void Util::set_imu_temp(float current) { #if HAL_WITH_IO_MCU && HAL_HAVE_IMU_HEATER if (!heater.target || *heater.target == -1 || !AP_BoardConfig::io_enabled()) { return; } // average over temperatures to remove noise heater.count++; heater.sum += current; // update once a second uint32_t now = AP_HAL::millis(); if (now - heater.last_update_ms < 1000) { return; } heater.last_update_ms = now; current = heater.sum / heater.count; heater.sum = 0; heater.count = 0; // experimentally tweaked for Pixhawk2 const float kI = 0.3f; const float kP = 200.0f; float target = (float)(*heater.target); // limit to 65 degrees to prevent damage target = constrain_float(target, 0, 65); float err = target - current; heater.integrator += kI * err; heater.integrator = constrain_float(heater.integrator, 0, 70); float output = constrain_float(kP * err + heater.integrator, 0, 100); // hal.console->printf("integrator %.1f out=%.1f temp=%.2f err=%.2f\n", heater.integrator, output, current, err); iomcu.set_heater_duty_cycle(output); #endif // HAL_WITH_IO_MCU && HAL_HAVE_IMU_HEATER } void Util::set_imu_target_temp(int8_t *target) { #if HAL_WITH_IO_MCU && HAL_HAVE_IMU_HEATER heater.target = target; #endif } #ifdef HAL_PWM_ALARM static int state; ToneAlarm Util::_toneAlarm; bool Util::toneAlarm_init() { return _toneAlarm.init(); } void Util::toneAlarm_set_tune(uint8_t tone) { _toneAlarm.set_tune(tone); } // (state 0) if init_tune() -> (state 1) complete=false // (state 1) if set_note -> (state 2) -> if play -> (state 3) // play returns true if tune has changed or tune is complete (repeating tunes never complete) // (state 3) -> (state 1) // (on every tick) if (complete) -> (state 0) void Util::_toneAlarm_timer_tick() { if(state == 0) { state = state + _toneAlarm.init_tune(); } else if (state == 1) { state = state + _toneAlarm.set_note(); } if (state == 2) { state = state + _toneAlarm.play(); } else if (state == 3) { state = 1; } if (_toneAlarm.is_tune_comp()) { state = 0; } } #endif // HAL_PWM_ALARM /* set HW RTC in UTC microseconds */ void Util::set_hw_rtc(uint64_t time_utc_usec) { stm32_set_utc_usec(time_utc_usec); } /* get system clock in UTC microseconds */ uint64_t Util::get_hw_rtc() const { return stm32_get_utc_usec(); } bool Util::flash_bootloader() { uint32_t fw_size; const char *fw_name = "bootloader.bin"; const uint8_t *fw = AP_ROMFS::find_file(fw_name, fw_size); if (!fw) { hal.console->printf("failed to find %s\n", fw_name); return false; } const uint32_t addr = stm32_flash_getpageaddr(0); if (!memcmp(fw, (const void*)addr, fw_size)) { hal.console->printf("Bootloader up-to-date\n"); return true; } hal.console->printf("Erasing\n"); if (!stm32_flash_erasepage(0)) { hal.console->printf("Erase failed\n"); return false; } hal.console->printf("Flashing %s @%08x\n", fw_name, (unsigned int)addr); const uint8_t max_attempts = 10; for (uint8_t i=0; idisable_interrupts_save(); const int32_t written = stm32_flash_write(addr, fw, fw_size); hal.scheduler->restore_interrupts(context); if (written == -1 || written < fw_size) { hal.console->printf("Flash failed! (attempt=%u/%u)\n", i+1, max_attempts); hal.scheduler->delay(1000); continue; } hal.console->printf("Flash OK\n"); return true; } hal.console->printf("Flash failed after %u attempts\n", max_attempts); return false; } /* display system identifer - board type and serial number */ bool Util::get_system_id(char buf[40]) { uint8_t serialid[12]; char board_name[14]; memcpy(serialid, (const void *)UDID_START, 12); strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13); board_name[13] = 0; // this format is chosen to match the format used by HAL_PX4 snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X", board_name, (unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0], (unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4], (unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]); return true; }