#include "AC_AttitudeControl.h" #include extern const AP_HAL::HAL& hal; #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) // default gains for Plane # define AC_ATTITUDE_CONTROL_INPUT_TC_DEFAULT 0.2f // Soft #else // default gains for Copter and Sub # define AC_ATTITUDE_CONTROL_INPUT_TC_DEFAULT 0.15f // Medium #endif // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl::var_info[] = { // 0, 1 were RATE_RP_MAX, RATE_Y_MAX // @Param: SLEW_YAW // @DisplayName: Yaw target slew rate // @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes // @Units: cdeg/s // @Range: 500 18000 // @Increment: 100 // @User: Advanced AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS), // 3 was for ACCEL_RP_MAX // @Param: ACCEL_Y_MAX // @DisplayName: Acceleration Max for Yaw // @Description: Maximum acceleration in yaw axis // @Units: cdeg/s/s // @Range: 0 72000 // @Values: 0:Disabled, 9000:VerySlow, 18000:Slow, 36000:Medium, 54000:Fast // @Increment: 1000 // @User: Advanced AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl, _accel_yaw_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS), // @Param: RATE_FF_ENAB // @DisplayName: Rate Feedforward Enable // @Description: Controls whether body-frame rate feedfoward is enabled or disabled // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO("RATE_FF_ENAB", 5, AC_AttitudeControl, _rate_bf_ff_enabled, AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT), // @Param: ACCEL_R_MAX // @DisplayName: Acceleration Max for Roll // @Description: Maximum acceleration in roll axis // @Units: cdeg/s/s // @Range: 0 180000 // @Increment: 1000 // @Values: 0:Disabled, 30000:VerySlow, 72000:Slow, 108000:Medium, 162000:Fast // @User: Advanced AP_GROUPINFO("ACCEL_R_MAX", 6, AC_AttitudeControl, _accel_roll_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS), // @Param: ACCEL_P_MAX // @DisplayName: Acceleration Max for Pitch // @Description: Maximum acceleration in pitch axis // @Units: cdeg/s/s // @Range: 0 180000 // @Increment: 1000 // @Values: 0:Disabled, 30000:VerySlow, 72000:Slow, 108000:Medium, 162000:Fast // @User: Advanced AP_GROUPINFO("ACCEL_P_MAX", 7, AC_AttitudeControl, _accel_pitch_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS), // IDs 8,9,10,11 RESERVED (in use on Solo) // @Param: ANGLE_BOOST // @DisplayName: Angle Boost // @Description: Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO("ANGLE_BOOST", 12, AC_AttitudeControl, _angle_boost_enabled, 1), // @Param: ANG_RLL_P // @DisplayName: Roll axis angle controller P gain // @Description: Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 12.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_roll, "ANG_RLL_", 13, AC_AttitudeControl, AC_P), // @Param: ANG_PIT_P // @DisplayName: Pitch axis angle controller P gain // @Description: Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 12.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_pitch, "ANG_PIT_", 14, AC_AttitudeControl, AC_P), // @Param: ANG_YAW_P // @DisplayName: Yaw axis angle controller P gain // @Description: Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 6.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_yaw, "ANG_YAW_", 15, AC_AttitudeControl, AC_P), // @Param: ANG_LIM_TC // @DisplayName: Angle Limit (to maintain altitude) Time Constant // @Description: Angle Limit (to maintain altitude) Time Constant // @Range: 0.5 10.0 // @User: Advanced AP_GROUPINFO("ANG_LIM_TC", 16, AC_AttitudeControl, _angle_limit_tc, AC_ATTITUDE_CONTROL_ANGLE_LIMIT_TC_DEFAULT), // @Param: RATE_R_MAX // @DisplayName: Angular Velocity Max for Roll // @Description: Maximum angular velocity in roll axis // @Units: deg/s // @Range: 0 1080 // @Increment: 1 // @Values: 0:Disabled, 360:Slow, 720:Medium, 1080:Fast // @User: Advanced AP_GROUPINFO("RATE_R_MAX", 17, AC_AttitudeControl, _ang_vel_roll_max, 0.0f), // @Param: RATE_P_MAX // @DisplayName: Angular Velocity Max for Pitch // @Description: Maximum angular velocity in pitch axis // @Units: deg/s // @Range: 0 1080 // @Increment: 1 // @Values: 0:Disabled, 360:Slow, 720:Medium, 1080:Fast // @User: Advanced AP_GROUPINFO("RATE_P_MAX", 18, AC_AttitudeControl, _ang_vel_pitch_max, 0.0f), // @Param: RATE_Y_MAX // @DisplayName: Angular Velocity Max for Yaw // @Description: Maximum angular velocity in yaw axis // @Units: deg/s // @Range: 0 1080 // @Increment: 1 // @Values: 0:Disabled, 360:Slow, 720:Medium, 1080:Fast // @User: Advanced AP_GROUPINFO("RATE_Y_MAX", 19, AC_AttitudeControl, _ang_vel_yaw_max, 0.0f), // @Param: INPUT_TC // @DisplayName: Attitude control input time constant // @Description: Attitude control input time constant. Low numbers lead to sharper response, higher numbers to softer response // @Units: s // @Range: 0 1 // @Increment: 0.01 // @Values: 0.5:Very Soft, 0.2:Soft, 0.15:Medium, 0.1:Crisp, 0.05:Very Crisp // @User: Standard AP_GROUPINFO("INPUT_TC", 20, AC_AttitudeControl, _input_tc, AC_ATTITUDE_CONTROL_INPUT_TC_DEFAULT), AP_GROUPEND }; // Ensure attitude controller have zero errors to relax rate controller output void AC_AttitudeControl::relax_attitude_controllers() { // Initialize the attitude variables to the current attitude _ahrs.get_quat_body_to_ned(_attitude_target); _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); _attitude_ang_error.initialise(); // Initialize the angular rate variables to the current rate _ang_vel_target = _ahrs.get_gyro(); ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); _ang_vel_body = _ahrs.get_gyro(); // Initialize remaining variables _thrust_error_angle = 0.0f; // Reset the PID filters get_rate_roll_pid().reset_filter(); get_rate_pitch_pid().reset_filter(); get_rate_yaw_pid().reset_filter(); // Reset the I terms reset_rate_controller_I_terms(); } void AC_AttitudeControl::reset_rate_controller_I_terms() { get_rate_roll_pid().reset_I(); get_rate_pitch_pid().reset_I(); get_rate_yaw_pid().reset_I(); } // reset rate controller I terms smoothly to zero in 0.5 seconds void AC_AttitudeControl::reset_rate_controller_I_terms_smoothly() { get_rate_roll_pid().reset_I_smoothly(); get_rate_pitch_pid().reset_I_smoothly(); get_rate_yaw_pid().reset_I_smoothly(); } // The attitude controller works around the concept of the desired attitude, target attitude // and measured attitude. The desired attitude is the attitude input into the attitude controller // that expresses where the higher level code would like the aircraft to move to. The target attitude is moved // to the desired attitude with jerk, acceleration, and velocity limits. The target angular velocities are fed // directly into the rate controllers. The angular error between the measured attitude and the target attitude is // fed into the angle controller and the output of the angle controller summed at the input of the rate controllers. // By feeding the target angular velocity directly into the rate controllers the measured and target attitudes // remain very close together. // // All input functions below follow the same procedure // 1. define the desired attitude the aircraft should attempt to achieve using the input variables // 2. using the desired attitude and input variables, define the target angular velocity so that it should // move the target attitude towards the desired attitude // 3. if _rate_bf_ff_enabled is not being used then make the target attitude // and target angular velocities equal to the desired attitude and desired angular velocities. // 4. ensure _attitude_target, _euler_angle_target, _euler_rate_target and // _ang_vel_target have been defined. This ensures input modes can be changed without discontinuity. // 5. attitude_controller_run_quat is then run to pass the target angular velocities to the rate controllers and // integrate them into the target attitude. Any errors between the target attitude and the measured attitude are // corrected by first correcting the thrust vector until the angle between the target thrust vector measured // trust vector drops below 2*AC_ATTITUDE_THRUST_ERROR_ANGLE. At this point the heading is also corrected. // Command a Quaternion attitude with feedforward and smoothing void AC_AttitudeControl::input_quaternion(Quaternion attitude_desired_quat) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL // this function is not currently used, this is a reminder that we need to add a 6DoF implementation AP_HAL::panic("input_quaternion not implemented AC_AttitudeControl_Multi_6DoF"); #endif // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); Quaternion attitude_error_quat = _attitude_target.inverse() * attitude_desired_quat; Vector3f attitude_error_angle; attitude_error_quat.to_axis_angle(attitude_error_angle); if (_rate_bf_ff_enabled) { // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by _input_tc at the end. _ang_vel_target.x = input_shaping_angle(wrap_PI(attitude_error_angle.x), _input_tc, get_accel_roll_max_radss(), _ang_vel_target.x, _dt); _ang_vel_target.y = input_shaping_angle(wrap_PI(attitude_error_angle.y), _input_tc, get_accel_pitch_max_radss(), _ang_vel_target.y, _dt); _ang_vel_target.z = input_shaping_angle(wrap_PI(attitude_error_angle.z), _input_tc, get_accel_yaw_max_radss(), _ang_vel_target.z, _dt); // Limit the angular velocity ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); } else { _attitude_target = attitude_desired_quat; // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) { // Convert from centidegrees on public interface to radians float euler_roll_angle = radians(euler_roll_angle_cd * 0.01f); float euler_pitch_angle = radians(euler_pitch_angle_cd * 0.01f); float euler_yaw_rate = radians(euler_yaw_rate_cds * 0.01f); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle += get_roll_trim_rad(); if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis const Vector3f euler_accel = euler_accel_limit(_euler_angle_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()}); // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by smoothing_gain at the end. _euler_rate_target.x = input_shaping_angle(wrap_PI(euler_roll_angle - _euler_angle_target.x), _input_tc, euler_accel.x, _euler_rate_target.x, _dt); _euler_rate_target.y = input_shaping_angle(wrap_PI(euler_pitch_angle - _euler_angle_target.y), _input_tc, euler_accel.y, _euler_rate_target.y, _dt); // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. _euler_rate_target.z = input_shaping_ang_vel(_euler_rate_target.z, euler_yaw_rate, euler_accel.z, _dt); // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); // Limit the angular velocity ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); } else { // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. _euler_angle_target.x = euler_roll_angle; _euler_angle_target.y = euler_pitch_angle; _euler_angle_target.z += euler_yaw_rate * _dt; // Compute quaternion target attitude _attitude_target.from_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw) { // Convert from centidegrees on public interface to radians float euler_roll_angle = radians(euler_roll_angle_cd * 0.01f); float euler_pitch_angle = radians(euler_pitch_angle_cd * 0.01f); float euler_yaw_angle = radians(euler_yaw_angle_cd * 0.01f); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle += get_roll_trim_rad(); if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis const Vector3f euler_accel = euler_accel_limit(_euler_angle_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()}); // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by _input_tc at the end. _euler_rate_target.x = input_shaping_angle(wrap_PI(euler_roll_angle - _euler_angle_target.x), _input_tc, euler_accel.x, _euler_rate_target.x, _dt); _euler_rate_target.y = input_shaping_angle(wrap_PI(euler_pitch_angle - _euler_angle_target.y), _input_tc, euler_accel.y, _euler_rate_target.y, _dt); _euler_rate_target.z = input_shaping_angle(wrap_PI(euler_yaw_angle - _euler_angle_target.z), _input_tc, euler_accel.z, _euler_rate_target.z, _dt); if (slew_yaw) { _euler_rate_target.z = constrain_float(_euler_rate_target.z, -get_slew_yaw_rads(), get_slew_yaw_rads()); } // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); // Limit the angular velocity ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); } else { // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. _euler_angle_target.x = euler_roll_angle; _euler_angle_target.y = euler_pitch_angle; if (slew_yaw) { // Compute constrained angle error float angle_error = constrain_float(wrap_PI(euler_yaw_angle - _euler_angle_target.z), -get_slew_yaw_rads() * _dt, get_slew_yaw_rads() * _dt); // Update attitude target from constrained angle error _euler_angle_target.z = wrap_PI(angle_error + _euler_angle_target.z); } else { _euler_angle_target.z = euler_yaw_angle; } // Compute quaternion target attitude _attitude_target.from_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds) { // Convert from centidegrees on public interface to radians float euler_roll_rate = radians(euler_roll_rate_cds * 0.01f); float euler_pitch_rate = radians(euler_pitch_rate_cds * 0.01f); float euler_yaw_rate = radians(euler_yaw_rate_cds * 0.01f); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis const Vector3f euler_accel = euler_accel_limit(_euler_angle_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()}); // When acceleration limiting is enabled, the input shaper constrains angular acceleration, slewing // the output rate towards the input rate. _euler_rate_target.x = input_shaping_ang_vel(_euler_rate_target.x, euler_roll_rate, euler_accel.x, _dt); _euler_rate_target.y = input_shaping_ang_vel(_euler_rate_target.y, euler_pitch_rate, euler_accel.y, _dt); _euler_rate_target.z = input_shaping_ang_vel(_euler_rate_target.z, euler_yaw_rate, euler_accel.z, _dt); // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); } else { // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. // Pitch angle is restricted to +- 85.0 degrees to avoid gimbal lock discontinuities. _euler_angle_target.x = wrap_PI(_euler_angle_target.x + euler_roll_rate * _dt); _euler_angle_target.y = constrain_float(_euler_angle_target.y + euler_pitch_rate * _dt, radians(-85.0f), radians(85.0f)); _euler_angle_target.z = wrap_2PI(_euler_angle_target.z + euler_yaw_rate * _dt); // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); // Compute quaternion target attitude _attitude_target.from_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an angular velocity with angular velocity feedforward and smoothing void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_rads = radians(roll_rate_bf_cds * 0.01f); float pitch_rate_rads = radians(pitch_rate_bf_cds * 0.01f); float yaw_rate_rads = radians(yaw_rate_bf_cds * 0.01f); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); if (_rate_bf_ff_enabled) { // Compute acceleration-limited body frame rates // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing // the output rate towards the input rate. _ang_vel_target.x = input_shaping_ang_vel(_ang_vel_target.x, roll_rate_rads, get_accel_roll_max_radss(), _dt); _ang_vel_target.y = input_shaping_ang_vel(_ang_vel_target.y, pitch_rate_rads, get_accel_pitch_max_radss(), _dt); _ang_vel_target.z = input_shaping_ang_vel(_ang_vel_target.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); } else { // When feedforward is not enabled, the quaternion is calculated and is input into the target and the feedforward rate is zeroed. Quaternion attitude_target_update; attitude_target_update.from_axis_angle(Vector3f{roll_rate_rads * _dt, pitch_rate_rads * _dt, yaw_rate_rads * _dt}); _attitude_target = _attitude_target * attitude_target_update; _attitude_target.normalize(); // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an angular velocity with angular velocity smoothing using rate loops only with no attitude loop stabilization void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw_2(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_rads = radians(roll_rate_bf_cds * 0.01f); float pitch_rate_rads = radians(pitch_rate_bf_cds * 0.01f); float yaw_rate_rads = radians(yaw_rate_bf_cds * 0.01f); // Compute acceleration-limited body frame rates // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing // the output rate towards the input rate. _ang_vel_target.x = input_shaping_ang_vel(_ang_vel_target.x, roll_rate_rads, get_accel_roll_max_radss(), _dt); _ang_vel_target.y = input_shaping_ang_vel(_ang_vel_target.y, pitch_rate_rads, get_accel_pitch_max_radss(), _dt); _ang_vel_target.z = input_shaping_ang_vel(_ang_vel_target.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt); // Update the unused targets attitude based on current attitude to condition mode change _ahrs.get_quat_body_to_ned(_attitude_target); _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); _ang_vel_body = _ang_vel_target; } // Command an angular velocity with angular velocity smoothing using rate loops only with integrated rate error stabilization void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw_3(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_rads = radians(roll_rate_bf_cds * 0.01f); float pitch_rate_rads = radians(pitch_rate_bf_cds * 0.01f); float yaw_rate_rads = radians(yaw_rate_bf_cds * 0.01f); // Update attitude error Vector3f attitude_error; _attitude_ang_error.to_axis_angle(attitude_error); Quaternion attitude_ang_error_update_quat; // limit the integrated error angle float err_mag = attitude_error.length(); if (err_mag > AC_ATTITUDE_THRUST_ERROR_ANGLE) { attitude_error *= AC_ATTITUDE_THRUST_ERROR_ANGLE / err_mag; _attitude_ang_error.from_axis_angle(attitude_error); } Vector3f gyro_latest = _ahrs.get_gyro_latest(); attitude_ang_error_update_quat.from_axis_angle(Vector3f{(_ang_vel_target.x-gyro_latest.x) * _dt, (_ang_vel_target.y-gyro_latest.y) * _dt, (_ang_vel_target.z-gyro_latest.z) * _dt}); _attitude_ang_error = attitude_ang_error_update_quat * _attitude_ang_error; // Compute acceleration-limited body frame rates // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing // the output rate towards the input rate. _ang_vel_target.x = input_shaping_ang_vel(_ang_vel_target.x, roll_rate_rads, get_accel_roll_max_radss(), _dt); _ang_vel_target.y = input_shaping_ang_vel(_ang_vel_target.y, pitch_rate_rads, get_accel_pitch_max_radss(), _dt); _ang_vel_target.z = input_shaping_ang_vel(_ang_vel_target.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt); // Retrieve quaternion body attitude Quaternion attitude_body; _ahrs.get_quat_body_to_ned(attitude_body); // Update the unused targets attitude based on current attitude to condition mode change _attitude_target = attitude_body * _attitude_ang_error; // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); // Compute the angular velocity target from the integrated rate error _attitude_ang_error.to_axis_angle(attitude_error); _ang_vel_body = update_ang_vel_target_from_att_error(attitude_error); _ang_vel_body += _ang_vel_target; // ensure Quaternions stay normalized _attitude_ang_error.normalize(); } // Command an angular step (i.e change) in body frame angle // Used to command a step in angle without exciting the orthogonal axis during autotune void AC_AttitudeControl::input_angle_step_bf_roll_pitch_yaw(float roll_angle_step_bf_cd, float pitch_angle_step_bf_cd, float yaw_angle_step_bf_cd) { // Convert from centidegrees on public interface to radians float roll_step_rads = radians(roll_angle_step_bf_cd * 0.01f); float pitch_step_rads = radians(pitch_angle_step_bf_cd * 0.01f); float yaw_step_rads = radians(yaw_angle_step_bf_cd * 0.01f); // rotate attitude target by desired step Quaternion attitude_target_update; attitude_target_update.from_axis_angle(Vector3f{roll_step_rads, pitch_step_rads, yaw_step_rads}); _attitude_target = _attitude_target * attitude_target_update; _attitude_target.normalize(); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); // Call quaternion attitude controller attitude_controller_run_quat(); } // Command a thrust vector and heading rate void AC_AttitudeControl::input_thrust_vector_rate_heading(const Vector3f& thrust_vector, float heading_rate_cds) { // Convert from centidegrees on public interface to radians const float heading_rate = radians(heading_rate_cds * 0.01f); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // convert thrust vector to a quaternion attitude Quaternion thrust_vec_quat = attitude_from_thrust_vector(thrust_vector, 0.0f); // calculate the angle error in x and y. float thrust_vector_diff_angle; Quaternion thrust_vec_correction_quat; Vector3f attitude_error; float returned_thrust_vector_angle; thrust_vector_rotation_angles(thrust_vec_quat, _attitude_target, thrust_vec_correction_quat, attitude_error, returned_thrust_vector_angle, thrust_vector_diff_angle); if (_rate_bf_ff_enabled) { // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. _ang_vel_target.x = input_shaping_angle(attitude_error.x, _input_tc, get_accel_roll_max_radss(), _ang_vel_target.x, _dt); _ang_vel_target.y = input_shaping_angle(attitude_error.y, _input_tc, get_accel_pitch_max_radss(), _ang_vel_target.y, _dt); // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. _ang_vel_target.z = input_shaping_ang_vel(_ang_vel_target.z, heading_rate, get_accel_yaw_max_radss(), _dt); // Limit the angular velocity ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), MIN(radians(_ang_vel_yaw_max), get_slew_yaw_rads())); } else { Quaternion yaw_quat; yaw_quat.from_axis_angle(Vector3f{0.0f, 0.0f, heading_rate * _dt}); _attitude_target = _attitude_target * thrust_vec_correction_quat * yaw_quat; // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); } // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); // Call quaternion attitude controller attitude_controller_run_quat(); } // Command a thrust vector, heading and heading rate void AC_AttitudeControl::input_thrust_vector_heading(const Vector3f& thrust_vector, float heading_angle_cd, float heading_rate_cds) { // Convert from centidegrees on public interface to radians float heading_rate = constrain_float(radians(heading_rate_cds * 0.01f), -get_slew_yaw_rads(), get_slew_yaw_rads()); float heading_angle = radians(heading_angle_cd * 0.01f); // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); // convert thrust vector and heading to a quaternion attitude const Quaternion desired_attitude_quat = attitude_from_thrust_vector(thrust_vector, heading_angle); if (_rate_bf_ff_enabled) { // calculate the angle error in x and y. Vector3f attitude_error; float thrust_vector_diff_angle; Quaternion thrust_vec_correction_quat; float returned_thrust_vector_angle; thrust_vector_rotation_angles(desired_attitude_quat, _attitude_target, thrust_vec_correction_quat, attitude_error, returned_thrust_vector_angle, thrust_vector_diff_angle); // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. _ang_vel_target.x = input_shaping_angle(attitude_error.x, _input_tc, get_accel_roll_max_radss(), _ang_vel_target.x, _dt); _ang_vel_target.y = input_shaping_angle(attitude_error.y, _input_tc, get_accel_pitch_max_radss(), _ang_vel_target.y, _dt); _ang_vel_target.z = input_shaping_angle(attitude_error.z, _input_tc, get_accel_yaw_max_radss(), _ang_vel_target.z, heading_rate, get_slew_yaw_rads(), _dt); // Limit the angular velocity ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), MIN(radians(_ang_vel_yaw_max), get_slew_yaw_rads())); } else { // set persisted quaternion target attitude _attitude_target = desired_attitude_quat; // Set rate feedforward requests to zero _euler_rate_target.zero(); _ang_vel_target.zero(); } // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); // Call quaternion attitude controller attitude_controller_run_quat(); } Quaternion AC_AttitudeControl::attitude_from_thrust_vector(Vector3f thrust_vector, float heading_angle) const { const Vector3f thrust_vector_up{0.0f, 0.0f, -1.0f}; if (is_zero(thrust_vector.length_squared())) { thrust_vector = thrust_vector_up; } else { thrust_vector.normalize(); } // the cross product of the desired and target thrust vector defines the rotation vector Vector3f thrust_vec_cross = thrust_vector_up % thrust_vector; // the dot product is used to calculate the angle between the target and desired thrust vectors const float thrust_vector_angle = acosf(constrain_float(thrust_vector_up * thrust_vector, -1.0f, 1.0f)); // Normalize the thrust rotation vector const float thrust_vector_length = thrust_vec_cross.length(); if (is_zero(thrust_vector_length) || is_zero(thrust_vector_angle)) { thrust_vec_cross = thrust_vector_up; } else { thrust_vec_cross /= thrust_vector_length; } Quaternion thrust_vec_quat; thrust_vec_quat.from_axis_angle(thrust_vec_cross, thrust_vector_angle); Quaternion yaw_quat; yaw_quat.from_axis_angle(Vector3f{0.0f, 0.0f, 1.0f}, heading_angle); return thrust_vec_quat*yaw_quat; } // Calculates the body frame angular velocities to follow the target attitude void AC_AttitudeControl::attitude_controller_run_quat() { // This represents a quaternion rotation in NED frame to the body Quaternion attitude_body; _ahrs.get_quat_body_to_ned(attitude_body); // This vector represents the angular error to rotate the thrust vector using x and y and heading using z Vector3f attitude_error; thrust_heading_rotation_angles(_attitude_target, attitude_body, attitude_error, _thrust_angle, _thrust_error_angle); // Compute the angular velocity corrections in the body frame from the attitude error _ang_vel_body = update_ang_vel_target_from_att_error(attitude_error); // ensure angular velocity does not go over configured limits ang_vel_limit(_ang_vel_body, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // rotation from the target frame to the body frame Quaternion rotation_target_to_body = attitude_body.inverse() * _attitude_target; // target angle velocity vector in the body frame Vector3f ang_vel_body_feedforward = rotation_target_to_body * _ang_vel_target; // Correct the thrust vector and smoothly add feedforward and yaw input _feedforward_scalar = 1.0f; if (_thrust_error_angle > AC_ATTITUDE_THRUST_ERROR_ANGLE * 2.0f) { _ang_vel_body.z = _ahrs.get_gyro().z; } else if (_thrust_error_angle > AC_ATTITUDE_THRUST_ERROR_ANGLE) { _feedforward_scalar = (1.0f - (_thrust_error_angle - AC_ATTITUDE_THRUST_ERROR_ANGLE) / AC_ATTITUDE_THRUST_ERROR_ANGLE); _ang_vel_body.x += ang_vel_body_feedforward.x * _feedforward_scalar; _ang_vel_body.y += ang_vel_body_feedforward.y * _feedforward_scalar; _ang_vel_body.z += ang_vel_body_feedforward.z; _ang_vel_body.z = _ahrs.get_gyro().z * (1.0 - _feedforward_scalar) + _ang_vel_body.z * _feedforward_scalar; } else { _ang_vel_body += ang_vel_body_feedforward; } if (_rate_bf_ff_enabled) { // rotate target and normalize Quaternion attitude_target_update; attitude_target_update.from_axis_angle(Vector3f{_ang_vel_target.x * _dt, _ang_vel_target.y * _dt, _ang_vel_target.z * _dt}); _attitude_target = _attitude_target * attitude_target_update; _attitude_target.normalize(); } // ensure Quaternion stay normalised _attitude_target.normalize(); // Record error to handle EKF resets _attitude_ang_error = attitude_body.inverse() * _attitude_target; } // thrust_heading_rotation_angles - calculates two ordered rotations to move the attitude_body quaternion to the attitude_target quaternion. // The maximum error in the yaw axis is limited based on the angle yaw P value and acceleration. void AC_AttitudeControl::thrust_heading_rotation_angles(Quaternion& attitude_target, const Quaternion& attitude_body, Vector3f& attitude_error, float& thrust_angle, float& thrust_error_angle) const { Quaternion thrust_vector_correction; thrust_vector_rotation_angles(attitude_target, attitude_body, thrust_vector_correction, attitude_error, thrust_angle, thrust_error_angle); // Todo: Limit roll an pitch error based on output saturation and maximum error. // Limit Yaw Error based on maximum acceleration - Update to include output saturation and maximum error. // Currently the limit is based on the maximum acceleration using the linear part of the SQRT controller. // This should be updated to be based on an angle limit, saturation, or unlimited based on user defined parameters. Quaternion yaw_vec_correction_quat; if (!is_zero(_p_angle_yaw.kP()) && fabsf(attitude_error.z) > AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS / _p_angle_yaw.kP()) { attitude_error.z = constrain_float(wrap_PI(attitude_error.z), -AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS / _p_angle_yaw.kP(), AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS / _p_angle_yaw.kP()); yaw_vec_correction_quat.from_axis_angle(Vector3f{0.0f, 0.0f, attitude_error.z}); attitude_target = attitude_body * thrust_vector_correction * yaw_vec_correction_quat; } } // thrust_vector_rotation_angles - calculates two ordered rotations to move the attitude_body quaternion to the attitude_target quaternion. // The first rotation corrects the thrust vector and the second rotation corrects the heading vector. void AC_AttitudeControl::thrust_vector_rotation_angles(const Quaternion& attitude_target, const Quaternion& attitude_body, Quaternion& thrust_vector_correction, Vector3f& attitude_error, float& thrust_angle, float& thrust_error_angle) const { // The direction of thrust is [0,0,-1] is any body-fixed frame, inc. body frame and target frame. const Vector3f thrust_vector_up{0.0f, 0.0f, -1.0f}; // attitude_target and attitute_body are passive rotations from target / body frames to the NED frame // Rotating [0,0,-1] by attitude_target expresses (gets a view of) the target thrust vector in the inertial frame Vector3f att_target_thrust_vec = attitude_target * thrust_vector_up; // target thrust vector // Rotating [0,0,-1] by attitude_target expresses (gets a view of) the current thrust vector in the inertial frame Vector3f att_body_thrust_vec = attitude_body * thrust_vector_up; // current thrust vector // the dot product is used to calculate the current lean angle for use of external functions thrust_angle = acosf(constrain_float(thrust_vector_up * att_body_thrust_vec,-1.0f,1.0f)); // the cross product of the desired and target thrust vector defines the rotation vector Vector3f thrust_vec_cross = att_body_thrust_vec % att_target_thrust_vec; // the dot product is used to calculate the angle between the target and desired thrust vectors thrust_error_angle = acosf(constrain_float(att_body_thrust_vec * att_target_thrust_vec, -1.0f, 1.0f)); // Normalize the thrust rotation vector float thrust_vector_length = thrust_vec_cross.length(); if (is_zero(thrust_vector_length) || is_zero(thrust_error_angle)) { thrust_vec_cross = thrust_vector_up; } else { thrust_vec_cross /= thrust_vector_length; } // thrust_vector_correction is defined relative to the body frame but its axis `thrust_vec_cross` was computed in // the inertial frame. First rotate it by the inverse of attitude_body to express it back in the body frame thrust_vec_cross = attitude_body.inverse() * thrust_vec_cross; thrust_vector_correction.from_axis_angle(thrust_vec_cross, thrust_error_angle); // calculate the angle error in x and y. Vector3f rotation; thrust_vector_correction.to_axis_angle(rotation); attitude_error.x = rotation.x; attitude_error.y = rotation.y; // calculate the remaining rotation required after thrust vector is rotated transformed to the body frame // heading_vector_correction Quaternion heading_vec_correction_quat = thrust_vector_correction.inverse() * attitude_body.inverse() * attitude_target; // calculate the angle error in z (x and y should be zero here). heading_vec_correction_quat.to_axis_angle(rotation); attitude_error.z = rotation.z; } // calculates the velocity correction from an angle error. The angular velocity has acceleration and // deceleration limits including basic jerk limiting using _input_tc float AC_AttitudeControl::input_shaping_angle(float error_angle, float input_tc, float accel_max, float target_ang_vel, float desired_ang_vel, float max_ang_vel, float dt) { // Calculate the velocity as error approaches zero with acceleration limited by accel_max_radss desired_ang_vel += sqrt_controller(error_angle, 1.0f / MAX(input_tc, 0.01f), accel_max, dt); if (is_positive(max_ang_vel)) { desired_ang_vel = constrain_float(desired_ang_vel, -max_ang_vel, max_ang_vel); } // Acceleration is limited directly to smooth the beginning of the curve. return input_shaping_ang_vel(target_ang_vel, desired_ang_vel, accel_max, dt); } // limits the acceleration and deceleration of a velocity request float AC_AttitudeControl::input_shaping_ang_vel(float target_ang_vel, float desired_ang_vel, float accel_max, float dt) { // Acceleration is limited directly to smooth the beginning of the curve. if (is_positive(accel_max)) { float delta_ang_vel = accel_max * dt; return constrain_float(desired_ang_vel, target_ang_vel - delta_ang_vel, target_ang_vel + delta_ang_vel); } else { return desired_ang_vel; } } // calculates the expected angular velocity correction from an angle error based on the AC_AttitudeControl settings. // This function can be used to predict the delay associated with angle requests. void AC_AttitudeControl::input_shaping_rate_predictor(const Vector2f &error_angle, Vector2f& target_ang_vel, float dt) const { if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis target_ang_vel.x = input_shaping_angle(wrap_PI(error_angle.x), _input_tc, get_accel_roll_max_radss(), target_ang_vel.x, dt); target_ang_vel.y = input_shaping_angle(wrap_PI(error_angle.y), _input_tc, get_accel_pitch_max_radss(), target_ang_vel.y, dt); } else { target_ang_vel.x = _p_angle_roll.get_p(wrap_PI(error_angle.x)); target_ang_vel.y = _p_angle_pitch.get_p(wrap_PI(error_angle.y)); } // Limit the angular velocity correction Vector3f ang_vel(target_ang_vel.x, target_ang_vel.y, 0.0f); ang_vel_limit(ang_vel, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), 0.0f); target_ang_vel.x = ang_vel.x; target_ang_vel.y = ang_vel.y; } // limits angular velocity void AC_AttitudeControl::ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_max, float ang_vel_pitch_max, float ang_vel_yaw_max) const { if (is_zero(ang_vel_roll_max) || is_zero(ang_vel_pitch_max)) { if (!is_zero(ang_vel_roll_max)) { euler_rad.x = constrain_float(euler_rad.x, -ang_vel_roll_max, ang_vel_roll_max); } if (!is_zero(ang_vel_pitch_max)) { euler_rad.y = constrain_float(euler_rad.y, -ang_vel_pitch_max, ang_vel_pitch_max); } } else { Vector2f thrust_vector_ang_vel(euler_rad.x / ang_vel_roll_max, euler_rad.y / ang_vel_pitch_max); float thrust_vector_length = thrust_vector_ang_vel.length(); if (thrust_vector_length > 1.0f) { euler_rad.x = thrust_vector_ang_vel.x * ang_vel_roll_max / thrust_vector_length; euler_rad.y = thrust_vector_ang_vel.y * ang_vel_pitch_max / thrust_vector_length; } } if (!is_zero(ang_vel_yaw_max)) { euler_rad.z = constrain_float(euler_rad.z, -ang_vel_yaw_max, ang_vel_yaw_max); } } // translates body frame acceleration limits to the euler axis Vector3f AC_AttitudeControl::euler_accel_limit(const Vector3f &euler_rad, const Vector3f &euler_accel) { float sin_phi = constrain_float(fabsf(sinf(euler_rad.x)), 0.1f, 1.0f); float cos_phi = constrain_float(fabsf(cosf(euler_rad.x)), 0.1f, 1.0f); float sin_theta = constrain_float(fabsf(sinf(euler_rad.y)), 0.1f, 1.0f); Vector3f rot_accel; if (is_zero(euler_accel.x) || is_zero(euler_accel.y) || is_zero(euler_accel.z) || is_negative(euler_accel.x) || is_negative(euler_accel.y) || is_negative(euler_accel.z)) { rot_accel.x = euler_accel.x; rot_accel.y = euler_accel.y; rot_accel.z = euler_accel.z; } else { rot_accel.x = euler_accel.x; rot_accel.y = MIN(euler_accel.y / cos_phi, euler_accel.z / sin_phi); rot_accel.z = MIN(MIN(euler_accel.x / sin_theta, euler_accel.y / sin_phi), euler_accel.z / cos_phi); } return rot_accel; } // Sets attitude target to vehicle attitude and sets all rates to zero void AC_AttitudeControl::reset_target_and_rate() { // move attitude target to current attitude _ahrs.get_quat_body_to_ned(_attitude_target); // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward _ang_vel_target.zero(); _euler_angle_target.zero(); } // Sets yaw target to vehicle heading and sets yaw rate to zero void AC_AttitudeControl::reset_yaw_target_and_rate() { // move attitude target to current heading float yaw_shift = _ahrs.yaw - _euler_angle_target.z; Quaternion _attitude_target_update; _attitude_target_update.from_axis_angle(Vector3f{0.0f, 0.0f, yaw_shift}); _attitude_target = _attitude_target_update * _attitude_target; // set yaw rate to zero _euler_rate_target.z = 0.0f; // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); } // Shifts the target attitude to maintain the current error in the event of an EKF reset void AC_AttitudeControl::inertial_frame_reset() { // Retrieve quaternion body attitude Quaternion attitude_body; _ahrs.get_quat_body_to_ned(attitude_body); // Recalculate the target quaternion _attitude_target = attitude_body * _attitude_ang_error; // calculate the attitude target euler angles _attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z); } // Convert a 321-intrinsic euler angle derivative to an angular velocity vector void AC_AttitudeControl::euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads) { float sin_theta = sinf(euler_rad.y); float cos_theta = cosf(euler_rad.y); float sin_phi = sinf(euler_rad.x); float cos_phi = cosf(euler_rad.x); ang_vel_rads.x = euler_rate_rads.x - sin_theta * euler_rate_rads.z; ang_vel_rads.y = cos_phi * euler_rate_rads.y + sin_phi * cos_theta * euler_rate_rads.z; ang_vel_rads.z = -sin_phi * euler_rate_rads.y + cos_theta * cos_phi * euler_rate_rads.z; } // Convert an angular velocity vector to a 321-intrinsic euler angle derivative // Returns false if the vehicle is pitched 90 degrees up or down bool AC_AttitudeControl::ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads) { float sin_theta = sinf(euler_rad.y); float cos_theta = cosf(euler_rad.y); float sin_phi = sinf(euler_rad.x); float cos_phi = cosf(euler_rad.x); // When the vehicle pitches all the way up or all the way down, the euler angles become discontinuous. In this case, we just return false. if (is_zero(cos_theta)) { return false; } euler_rate_rads.x = ang_vel_rads.x + sin_phi * (sin_theta / cos_theta) * ang_vel_rads.y + cos_phi * (sin_theta / cos_theta) * ang_vel_rads.z; euler_rate_rads.y = cos_phi * ang_vel_rads.y - sin_phi * ang_vel_rads.z; euler_rate_rads.z = (sin_phi / cos_theta) * ang_vel_rads.y + (cos_phi / cos_theta) * ang_vel_rads.z; return true; } // Update rate_target_ang_vel using attitude_error_rot_vec_rad Vector3f AC_AttitudeControl::update_ang_vel_target_from_att_error(const Vector3f &attitude_error_rot_vec_rad) { Vector3f rate_target_ang_vel; // Compute the roll angular velocity demand from the roll angle error if (_use_sqrt_controller && !is_zero(get_accel_roll_max_radss())) { rate_target_ang_vel.x = sqrt_controller(attitude_error_rot_vec_rad.x, _p_angle_roll.kP(), constrain_float(get_accel_roll_max_radss() / 2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS), _dt); } else { rate_target_ang_vel.x = _p_angle_roll.kP() * attitude_error_rot_vec_rad.x; } // Compute the pitch angular velocity demand from the pitch angle error if (_use_sqrt_controller && !is_zero(get_accel_pitch_max_radss())) { rate_target_ang_vel.y = sqrt_controller(attitude_error_rot_vec_rad.y, _p_angle_pitch.kP(), constrain_float(get_accel_pitch_max_radss() / 2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS), _dt); } else { rate_target_ang_vel.y = _p_angle_pitch.kP() * attitude_error_rot_vec_rad.y; } // Compute the yaw angular velocity demand from the yaw angle error if (_use_sqrt_controller && !is_zero(get_accel_yaw_max_radss())) { rate_target_ang_vel.z = sqrt_controller(attitude_error_rot_vec_rad.z, _p_angle_yaw.kP(), constrain_float(get_accel_yaw_max_radss() / 2.0f, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS), _dt); } else { rate_target_ang_vel.z = _p_angle_yaw.kP() * attitude_error_rot_vec_rad.z; } return rate_target_ang_vel; } // Enable or disable body-frame feed forward void AC_AttitudeControl::accel_limiting(bool enable_limits) { if (enable_limits) { // If enabling limits, reload from eeprom or set to defaults if (is_zero(_accel_roll_max)) { _accel_roll_max.load(); } if (is_zero(_accel_pitch_max)) { _accel_pitch_max.load(); } if (is_zero(_accel_yaw_max)) { _accel_yaw_max.load(); } } else { _accel_roll_max = 0.0f; _accel_pitch_max = 0.0f; _accel_yaw_max = 0.0f; } } // Return tilt angle limit for pilot input that prioritises altitude hold over lean angle float AC_AttitudeControl::get_althold_lean_angle_max() const { // convert to centi-degrees for public interface return MAX(ToDeg(_althold_lean_angle_max), AC_ATTITUDE_CONTROL_ANGLE_LIMIT_MIN) * 100.0f; } // Return roll rate step size in centidegrees/s that results in maximum output after 4 time steps float AC_AttitudeControl::max_rate_step_bf_roll() { float alpha = MIN(get_rate_roll_pid().get_filt_E_alpha(), get_rate_roll_pid().get_filt_D_alpha()); float alpha_remaining = 1 - alpha; // todo: When a thrust_max is available we should replace 0.5f with 0.5f * _motors.thrust_max float throttle_hover = constrain_float(_motors.get_throttle_hover(), 0.1f, 0.5f); return 2.0f * throttle_hover * AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX / ((alpha_remaining * alpha_remaining * alpha_remaining * alpha * get_rate_roll_pid().kD()) / _dt + get_rate_roll_pid().kP()); } // Return pitch rate step size in centidegrees/s that results in maximum output after 4 time steps float AC_AttitudeControl::max_rate_step_bf_pitch() { float alpha = MIN(get_rate_pitch_pid().get_filt_E_alpha(), get_rate_pitch_pid().get_filt_D_alpha()); float alpha_remaining = 1 - alpha; // todo: When a thrust_max is available we should replace 0.5f with 0.5f * _motors.thrust_max float throttle_hover = constrain_float(_motors.get_throttle_hover(), 0.1f, 0.5f); return 2.0f * throttle_hover * AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX / ((alpha_remaining * alpha_remaining * alpha_remaining * alpha * get_rate_pitch_pid().kD()) / _dt + get_rate_pitch_pid().kP()); } // Return yaw rate step size in centidegrees/s that results in maximum output after 4 time steps float AC_AttitudeControl::max_rate_step_bf_yaw() { float alpha = MIN(get_rate_yaw_pid().get_filt_E_alpha(), get_rate_yaw_pid().get_filt_D_alpha()); float alpha_remaining = 1 - alpha; // todo: When a thrust_max is available we should replace 0.5f with 0.5f * _motors.thrust_max float throttle_hover = constrain_float(_motors.get_throttle_hover(), 0.1f, 0.5f); return 2.0f * throttle_hover * AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX / ((alpha_remaining * alpha_remaining * alpha_remaining * alpha * get_rate_yaw_pid().kD()) / _dt + get_rate_yaw_pid().kP()); } bool AC_AttitudeControl::pre_arm_checks(const char *param_prefix, char *failure_msg, const uint8_t failure_msg_len) { // validate AC_P members: const struct { const char *pid_name; AC_P &p; } ps[] = { { "ANG_PIT", get_angle_pitch_p() }, { "ANG_RLL", get_angle_roll_p() }, { "ANG_YAW", get_angle_yaw_p() } }; for (uint8_t i=0; isnprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, ps[i].pid_name); return false; } } // validate AC_PID members: const struct { const char *pid_name; AC_PID &pid; } pids[] = { { "RAT_RLL", get_rate_roll_pid() }, { "RAT_PIT", get_rate_pitch_pid() }, { "RAT_YAW", get_rate_yaw_pid() }, }; for (uint8_t i=0; isnprintf(failure_msg, failure_msg_len, "%s_%s_P must be >= 0", param_prefix, pid_name); return false; } if (is_negative(pid.kI())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_I must be >= 0", param_prefix, pid_name); return false; } } else { // kP and kI must be positive: if (!is_positive(pid.kP())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, pid_name); return false; } if (!is_positive(pid.kI())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_I must be > 0", param_prefix, pid_name); return false; } } // never allow a negative D term (but zero is allowed) if (is_negative(pid.kD())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_D must be >= 0", param_prefix, pid_name); return false; } } return true; }