#include "AP_Mount_Xacti.h" #if HAL_MOUNT_XACTI_ENABLED #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; #define LOG_TAG "Mount" #define XACTI_MSG_SEND_MIN_MS 20 // messages should not be sent to camera more often than 20ms #define XACTI_DIGITAL_ZOOM_RATE_UPDATE_INTERVAL_MS 500 // digital zoom rate control updates 11% up or down every 0.5sec #define XACTI_OPTICAL_ZOOM_RATE_UPDATE_INTERVAL_MS 250 // optical zoom rate control updates 6.6% up or down every 0.25sec #define XACTI_STATUS_REQ_INTERVAL_MS 3000 // request status every 3 seconds #define XACTI_SET_PARAM_QUEUE_SIZE 3 // three set-param requests may be queued #define AP_MOUNT_XACTI_DEBUG 0 #define debug(fmt, args ...) do { if (AP_MOUNT_XACTI_DEBUG) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Xacti: " fmt, ## args); } } while (0) bool AP_Mount_Xacti::_subscribed = false; AP_Mount_Xacti::DetectedModules AP_Mount_Xacti::_detected_modules[]; HAL_Semaphore AP_Mount_Xacti::_sem_registry; const char* AP_Mount_Xacti::send_text_prefix = "Xacti:"; const char* AP_Mount_Xacti::sensor_mode_str[] = { "RGB", "IR", "PIP", "NDVI" }; const char* AP_Mount_Xacti::_param_names[] = {"SingleShot", "Recording", "FocusMode", "SensorMode", "DigitalZoomMagnification", "FirmwareVersion", "Status", "DateTime", "OpticalZoomMagnification"}; // Constructor AP_Mount_Xacti::AP_Mount_Xacti(class AP_Mount &frontend, class AP_Mount_Params ¶ms, uint8_t instance) : AP_Mount_Backend(frontend, params, instance) { register_backend(); param_int_cb = FUNCTOR_BIND_MEMBER(&AP_Mount_Xacti::handle_param_get_set_response_int, bool, AP_DroneCAN*, const uint8_t, const char*, int32_t &); param_string_cb = FUNCTOR_BIND_MEMBER(&AP_Mount_Xacti::handle_param_get_set_response_string, bool, AP_DroneCAN*, const uint8_t, const char*, AP_DroneCAN::string &); param_save_cb = FUNCTOR_BIND_MEMBER(&AP_Mount_Xacti::handle_param_save_response, void, AP_DroneCAN*, const uint8_t, bool); // static assert that Param enum matches parameter names array static_assert((uint8_t)AP_Mount_Xacti::Param::LAST+1 == ARRAY_SIZE(AP_Mount_Xacti::_param_names), "AP_Mount_Xacti::_param_names array must match Param enum"); } // init - performs any required initialisation for this instance void AP_Mount_Xacti::init() { // instantiate parameter queue, return on failure so init fails _set_param_int32_queue = new ObjectArray(XACTI_SET_PARAM_QUEUE_SIZE); if (_set_param_int32_queue == nullptr) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s init failed", send_text_prefix); return; } _initialised = true; } // update mount position - should be called periodically void AP_Mount_Xacti::update() { // exit immediately if not initialised if (!_initialised) { return; } // return immediately if any message sent is unlikely to be processed const uint32_t now_ms = AP_HAL::millis(); if (!is_safe_to_send(now_ms)) { return; } // get firmware version if (request_firmware_version(now_ms)) { return; } // additional initial setup if (_firmware_version.received) { // set date and time if (set_datetime(now_ms)) { return; } // request camera capabilities if (request_capabilities(now_ms)) { return; } } // request status if (request_status(now_ms)) { return; } // process queue of set parameter items if (process_set_param_int32_queue()) { return; } // periodically send copter attitude and GPS status if (send_copter_att_status(now_ms)) { // if message sent avoid sending other messages return; } // update zoom rate control if (update_zoom_rate_control(now_ms)) { // if message sent avoid sending other messages return; } // update based on mount mode switch (get_mode()) { // move mount to a "retracted" position. To-Do: remove support and replace with a relaxed mode? case MAV_MOUNT_MODE_RETRACT: { const Vector3f &angle_bf_target = _params.retract_angles.get(); mnt_target.target_type = MountTargetType::ANGLE; mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false); break; } case MAV_MOUNT_MODE_NEUTRAL: { const Vector3f &angle_bf_target = _params.neutral_angles.get(); mnt_target.target_type = MountTargetType::ANGLE; mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false); break; } case MAV_MOUNT_MODE_MAVLINK_TARGETING: { // mavlink targets are set while handling the incoming message break; } case MAV_MOUNT_MODE_RC_TARGETING: { // update targets using pilot's RC inputs MountTarget rc_target; get_rc_target(mnt_target.target_type, rc_target); switch (mnt_target.target_type) { case MountTargetType::ANGLE: mnt_target.angle_rad = rc_target; break; case MountTargetType::RATE: mnt_target.rate_rads = rc_target; break; } break; } // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: if (get_angle_target_to_roi(mnt_target.angle_rad)) { mnt_target.target_type = MountTargetType::ANGLE; } break; // point mount to Home location case MAV_MOUNT_MODE_HOME_LOCATION: if (get_angle_target_to_home(mnt_target.angle_rad)) { mnt_target.target_type = MountTargetType::ANGLE; } break; // point mount to another vehicle case MAV_MOUNT_MODE_SYSID_TARGET: if (get_angle_target_to_sysid(mnt_target.angle_rad)) { mnt_target.target_type = MountTargetType::ANGLE; } break; default: // we do not know this mode so raise internal error INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); break; } // send target angles or rates depending on the target type switch (mnt_target.target_type) { case MountTargetType::ANGLE: send_target_angles(mnt_target.angle_rad.pitch, mnt_target.angle_rad.yaw, mnt_target.angle_rad.yaw_is_ef); break; case MountTargetType::RATE: send_target_rates(mnt_target.rate_rads.pitch, mnt_target.rate_rads.yaw, mnt_target.rate_rads.yaw_is_ef); break; } } // return true if healthy bool AP_Mount_Xacti::healthy() const { // unhealthy until gimbal has been found and replied with firmware version and no motor errors if (!_initialised || !_firmware_version.received || _motor_error) { return false; } // unhealthy if attitude information NOT received recently const uint32_t now_ms = AP_HAL::millis(); if (now_ms - _last_current_attitude_quat_ms > 1000) { return false; } // if we get this far return healthy return true; } // take a picture. returns true on success bool AP_Mount_Xacti::take_picture() { // fail if camera errored if (_camera_error) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s unable to take pic", send_text_prefix); return false; } return set_param_int32(Param::SingleShot, 0); } // start or stop video recording. returns true on success // set start_recording = true to start record, false to stop recording bool AP_Mount_Xacti::record_video(bool start_recording) { return set_param_int32(Param::Recording, start_recording ? 1 : 0); } // set zoom specified as a rate or percentage bool AP_Mount_Xacti::set_zoom(ZoomType zoom_type, float zoom_value) { // zoom rate if (zoom_type == ZoomType::RATE) { if (is_zero(zoom_value)) { // stop zooming _zoom_rate_control.enabled = false; } else { // zoom in or out _zoom_rate_control.enabled = true; _zoom_rate_control.dir = (zoom_value < 0) ? -1 : 1; } return true; } // zoom percentage if (zoom_type == ZoomType::PCT) { if (capabilities.optical_zoom == Capability::True) { // optical zoom capable cameras use combination of optical and digital zoom // convert zoom percentage (0 ~ 100) to zoom times using linear interpolation // optical zoom covers 1x to 2.5x, param values are in 100 to 250 // digital zoom covers 2.5x to 25x, param values are 100 to 1000 const float zoom_times = linear_interpolate(1, 25, zoom_value, 0, 100); const uint16_t optical_zoom_param = constrain_uint16(uint16_t(zoom_times * 10) * 10, 100, 250); const uint16_t digital_zoom_param = constrain_uint16(uint16_t(zoom_times * 0.4) * 100, 100, 1000); bool ret = true; if (optical_zoom_param != _last_optical_zoom_param_value) { ret = set_param_int32(Param::OpticalZoomMagnification, optical_zoom_param); } if (digital_zoom_param != _last_digital_zoom_param_value) { ret &= set_param_int32(Param::DigitalZoomMagnification, digital_zoom_param); } return ret; } // digital only zoom // convert zoom percentage (0 ~ 100) to zoom parameter value (100, 200, 300, ... 1000) // 0~11pct:100, 12~22pct:200, 23~33pct:300, 34~44pct:400, 45~55pct:500, 56~66pct:600, 67~77pct:700, 78~88pct:800, 89~99pct:900, 100:1000 const uint16_t zoom_param_value = uint16_t(linear_interpolate(1, 10, zoom_value, 0, 100)) * 100; return set_param_int32(Param::DigitalZoomMagnification, zoom_param_value); } // unsupported zoom type return false; } // set focus specified as rate, percentage or auto // focus in = -1, focus hold = 0, focus out = 1 SetFocusResult AP_Mount_Xacti::set_focus(FocusType focus_type, float focus_value) { // convert focus type and value to parameter value uint8_t focus_param_value; switch (focus_type) { case FocusType::RATE: case FocusType::PCT: // focus rate and percentage control not supported so simply switch to manual focus // FocusMode of 0:Manual Focus focus_param_value = 0; break; case FocusType::AUTO: // FocusMode of 1:Single AutoFocus, 2:Continuous AutoFocus focus_param_value = 2; break; default: // unsupported forucs mode return SetFocusResult::INVALID_PARAMETERS; } // set FocusMode parameter return set_param_int32(Param::FocusMode, focus_param_value) ? SetFocusResult::ACCEPTED : SetFocusResult::FAILED; } // set camera lens as a value from 0 to 5 bool AP_Mount_Xacti::set_lens(uint8_t lens) { // sanity check if (lens > (uint8_t)SensorsMode::NDVI) { return false; } return set_param_int32(Param::SensorMode, lens); } // send camera information message to GCS void AP_Mount_Xacti::send_camera_information(mavlink_channel_t chan) const { // exit immediately if not initialised if (!_initialised) { return; } static const uint8_t vendor_name[32] = "Xacti"; static uint8_t model_name[32] = "CX-GB100"; const char cam_definition_uri[140] {}; const float NaN = nanf("0x4152"); // capability flags const uint32_t flags = CAMERA_CAP_FLAGS_CAPTURE_VIDEO | CAMERA_CAP_FLAGS_CAPTURE_IMAGE | CAMERA_CAP_FLAGS_HAS_BASIC_FOCUS; // send CAMERA_INFORMATION message mavlink_msg_camera_information_send( chan, AP_HAL::millis(), // time_boot_ms vendor_name, // vendor_name uint8_t[32] model_name, // model_name uint8_t[32] _firmware_version.received ? _firmware_version.mav_ver : 0, // firmware version uint32_t NaN, // focal_length float (mm) NaN, // sensor_size_h float (mm) NaN, // sensor_size_v float (mm) 0, // resolution_h uint16_t (pix) 0, // resolution_v uint16_t (pix) 0, // lens_id uint8_t flags, // flags uint32_t (CAMERA_CAP_FLAGS) 0, // cam_definition_version uint16_t cam_definition_uri, // cam_definition_uri char[140] _instance + 1); // gimbal_device_id uint8_t } // send camera settings message to GCS void AP_Mount_Xacti::send_camera_settings(mavlink_channel_t chan) const { const float NaN = nanf("0x4152"); // send CAMERA_SETTINGS message mavlink_msg_camera_settings_send( chan, AP_HAL::millis(), // time_boot_ms _recording_video ? CAMERA_MODE_VIDEO : CAMERA_MODE_IMAGE, // camera mode (0:image, 1:video, 2:image survey) 0, // zoomLevel float, percentage from 0 to 100, NaN if unknown NaN); // focusLevel float, percentage from 0 to 100, NaN if unknown } // get attitude as a quaternion. returns true on success bool AP_Mount_Xacti::get_attitude_quaternion(Quaternion& att_quat) { att_quat = _current_attitude_quat; return true; } // send target pitch and yaw rates to gimbal // yaw_is_ef should be true if yaw_rads target is an earth frame rate, false if body_frame void AP_Mount_Xacti::send_target_rates(float pitch_rads, float yaw_rads, bool yaw_is_ef) { // send gimbal rate target to gimbal send_gimbal_control(3, degrees(pitch_rads) * 100, degrees(yaw_rads) * 100); } // send target pitch and yaw angles to gimbal // yaw_is_ef should be true if yaw_rad target is an earth frame angle, false if body_frame void AP_Mount_Xacti::send_target_angles(float pitch_rad, float yaw_rad, bool yaw_is_ef) { // convert yaw to body frame const float yaw_bf_rad = yaw_is_ef ? wrap_PI(yaw_rad - AP::ahrs().yaw) : yaw_rad; // send angle target to gimbal send_gimbal_control(2, degrees(pitch_rad) * 100, degrees(yaw_bf_rad) * 100); } // subscribe to Xacti DroneCAN messages void AP_Mount_Xacti::subscribe_msgs(AP_DroneCAN* ap_dronecan) { // return immediately if DroneCAN is unavailable if (ap_dronecan == nullptr) { GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "%s DroneCAN subscribe failed", send_text_prefix); return; } _subscribed = true; if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_gimbal_attitude_status, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("gimbal_attitude_status_sub"); _subscribed = false; } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_gnss_status_req, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("gnss_status_req_sub"); _subscribed = false; } } // register backend in detected modules array used to map DroneCAN port and node id to backend void AP_Mount_Xacti::register_backend() { WITH_SEMAPHORE(_sem_registry); // add this backend to _detected_modules array _detected_modules[_instance].driver = this; // return if devid is zero meaning this backend has not yet been associated with a mount const uint32_t devid = (uint32_t)_params.dev_id.get(); if (devid == 0) { return; } // get DroneCan port from device id const uint8_t can_driver_index = AP_HAL::Device::devid_get_bus(devid); const uint8_t can_num_drivers = AP::can().get_num_drivers(); for (uint8_t i = 0; i < can_num_drivers; i++) { AP_DroneCAN *ap_dronecan = AP_DroneCAN::get_dronecan(i); if (ap_dronecan != nullptr && ap_dronecan->get_driver_index() == can_driver_index) { _detected_modules[_instance].ap_dronecan = ap_dronecan; } } // get node_id from device id _detected_modules[_instance].node_id = AP_HAL::Device::devid_get_address(devid); } // find backend associated with the given dronecan port and node_id. also associates backends with zero node ids // returns pointer to backend on success, nullptr on failure AP_Mount_Xacti* AP_Mount_Xacti::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id) { WITH_SEMAPHORE(_sem_registry); // exit immediately if DroneCAN is unavailable or invalid node id if (ap_dronecan == nullptr || node_id == 0) { return nullptr; } // search for backend with matching dronecan port and node id for (uint8_t i = 0; i < ARRAY_SIZE(_detected_modules); i++) { if (_detected_modules[i].driver != nullptr && _detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id ) { return _detected_modules[i].driver; } } // if we got this far, this dronecan port and node id are not associated with any backend // associate with first backend with node id of zero for (uint8_t i = 0; i < ARRAY_SIZE(_detected_modules); i++) { if (_detected_modules[i].driver != nullptr && _detected_modules[i].node_id == 0) { _detected_modules[i].ap_dronecan = ap_dronecan; _detected_modules[i].node_id = node_id; const auto dev_id = AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN, ap_dronecan->get_driver_index(), node_id, 0); _detected_modules[i].driver->set_dev_id(dev_id); return _detected_modules[i].driver; } } return nullptr; } // handle xacti gimbal attitude status message void AP_Mount_Xacti::handle_gimbal_attitude_status(AP_DroneCAN* ap_dronecan, const CanardRxTransfer& transfer, const com_xacti_GimbalAttitudeStatus &msg) { // fetch the matching backend driver, node id and gimbal id backend instance AP_Mount_Xacti* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver == nullptr) { return; } // convert body-frame Euler angles to Quaternion. Note yaw direction is reversed from normal driver->_current_attitude_quat.from_euler(radians(msg.gimbal_roll * 0.01), radians(msg.gimbal_pitch * 0.01), radians(-msg.gimbal_yaw * 0.01)); driver->_last_current_attitude_quat_ms = AP_HAL::millis(); } // handle xacti gnss status request message void AP_Mount_Xacti::handle_gnss_status_req(AP_DroneCAN* ap_dronecan, const CanardRxTransfer& transfer, const com_xacti_GnssStatusReq &msg) { // sanity check dronecan port if (ap_dronecan == nullptr) { return; } // get current location uint8_t gps_status = 2; Location loc; if (!AP::ahrs().get_location(loc)) { gps_status = 0; } // get date and time uint16_t year, ms; uint8_t month, day, hour, min, sec; #if AP_RTC_ENABLED if (!AP::rtc().get_date_and_time_utc(year, month, day, hour, min, sec, ms)) { year = month = day = hour = min = sec = 0; } #else year = month = day = hour = min = sec = 0; (void)ms; #endif // send xacti specific gnss status message com_xacti_GnssStatus xacti_gnss_status_msg {}; xacti_gnss_status_msg.gps_status = gps_status; xacti_gnss_status_msg.order = msg.requirement; xacti_gnss_status_msg.remain_buffer = 1; xacti_gnss_status_msg.utc_year = year; xacti_gnss_status_msg.utc_month = month + 1; xacti_gnss_status_msg.utc_day = day; xacti_gnss_status_msg.utc_hour = hour; xacti_gnss_status_msg.utc_minute = min; xacti_gnss_status_msg.utc_seconds = sec; xacti_gnss_status_msg.latitude = loc.lat * 1e-7; xacti_gnss_status_msg.longitude = loc.lng * 1e-7; xacti_gnss_status_msg.altitude = loc.alt * 1e-2; ap_dronecan->xacti_gnss_status.broadcast(xacti_gnss_status_msg); } // handle param get/set response bool AP_Mount_Xacti::handle_param_get_set_response_int(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, int32_t &value) { // error string prefix to save on flash const char* err_prefix_str = "Xacti: failed to"; // take picture if (strcmp(name, get_param_name_str(Param::SingleShot)) == 0) { if (value < 0) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s take pic", err_prefix_str); } return false; } // recording if (strcmp(name, get_param_name_str(Param::Recording)) == 0) { if (value < 0) { _recording_video = false; GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s record", err_prefix_str); } else { _recording_video = (value == 1); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s recording %s", send_text_prefix, _recording_video ? "ON" : "OFF"); } return false; } // focus if (strcmp(name, get_param_name_str(Param::FocusMode)) == 0) { if (value < 0) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change focus", err_prefix_str); } else { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s %s focus", send_text_prefix, value == 0 ? "manual" : "auto"); } return false; } // camera lens (aka sensor mode) if (strcmp(name, get_param_name_str(Param::SensorMode)) == 0) { if (value < 0) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change lens", err_prefix_str); } else if ((uint32_t)value < ARRAY_SIZE(sensor_mode_str)) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s %s", send_text_prefix, sensor_mode_str[(uint8_t)value]); } return false; } // digital zoom if (strcmp(name, get_param_name_str(Param::DigitalZoomMagnification)) == 0) { if (value < 0) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change zoom", err_prefix_str); // disable zoom rate control (if active) to avoid repeated failures _zoom_rate_control.enabled = false; } else if (value >= 100 && value <= 1000) { _last_digital_zoom_param_value = value; } return false; } // optical zoom if (strcmp(name, get_param_name_str(Param::OpticalZoomMagnification)) == 0) { if (value < 0) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change optical zoom", err_prefix_str); // disable zoom rate control (if active) to avoid repeated failures _zoom_rate_control.enabled = false; } else if (value >= 100 && value <= 250) { capabilities.optical_zoom = Capability::True; capabilities.received = true; _last_optical_zoom_param_value = value; } return false; } // unhandled parameter get or set GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s get/set %s res:%ld", send_text_prefix, name, (long int)value); return false; } // handle param get/set response bool AP_Mount_Xacti::handle_param_get_set_response_string(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, AP_DroneCAN::string &value) { if (strcmp(name, get_param_name_str(Param::FirmwareVersion)) == 0) { _firmware_version.received = true; const uint8_t len = MIN(value.len, ARRAY_SIZE(_firmware_version.str)-1); memcpy(_firmware_version.str, (const char*)value.data, len); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: Xacti fw:%s", _firmware_version.str); // firmware str from gimbal is of the format YYMMDD[b]xx. Convert to uint32 for reporting to GCS if (len >= 9) { const char major_str[3] = {_firmware_version.str[0], _firmware_version.str[1], 0}; const char minor_str[3] = {_firmware_version.str[2], _firmware_version.str[3], 0}; const char patch_str[3] = {_firmware_version.str[4], _firmware_version.str[5], 0}; const char dev_str[3] = {_firmware_version.str[7], _firmware_version.str[8], 0}; const uint8_t major_ver_num = atoi(major_str) & 0xFF; const uint8_t minor_ver_num = atoi(minor_str) & 0xFF; const uint8_t patch_ver_num = atoi(patch_str) & 0xFF; const uint8_t dev_ver_num = atoi(dev_str) & 0xFF; _firmware_version.mav_ver = UINT32_VALUE(dev_ver_num, patch_ver_num, minor_ver_num, major_ver_num); } return false; } else if (strcmp(name, get_param_name_str(Param::DateTime)) == 0) { // display when time and date have been set GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s datetime set %s", send_text_prefix, (const char*)value.data); return false; } else if (strcmp(name, get_param_name_str(Param::Status)) == 0) { // check for expected length const char* error_str = "error"; if (value.len != sizeof(_status)) { INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); return false; } // backup error status and copy to structure const uint32_t last_error_status = _status.error_status; memcpy(&_status, value.data, value.len); // report change in status uint32_t changed_bits = last_error_status ^ _status.error_status; const char* ok_str = "OK"; if (changed_bits & (uint32_t)ErrorStatus::TIME_NOT_SET) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s time %sset", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::TIME_NOT_SET ? "not " : ""); if (_status.error_status & (uint32_t)ErrorStatus::TIME_NOT_SET) { // try to set time again _datetime.set = false; } } if (changed_bits & (uint32_t)ErrorStatus::MEDIA_ERROR) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s media %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::MEDIA_ERROR ? error_str : ok_str); } if (changed_bits & (uint32_t)ErrorStatus::LENS_ERROR) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s lens %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::LENS_ERROR ? error_str : ok_str); } if (changed_bits & (uint32_t)ErrorStatus::MOTOR_INIT_ERROR) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s motor %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::MOTOR_INIT_ERROR ? "init error" : ok_str); } if (changed_bits & (uint32_t)ErrorStatus::MOTOR_OPERATION_ERROR) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s motor op %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::MOTOR_OPERATION_ERROR ? error_str : ok_str); } if (changed_bits & (uint32_t)ErrorStatus::GIMBAL_CONTROL_ERROR) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s control %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::GIMBAL_CONTROL_ERROR ? error_str : ok_str); } if (changed_bits & (uint32_t)ErrorStatus::TEMP_WARNING) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s temp %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::TEMP_WARNING ? "warning" : ok_str); } // set motor error for health reporting _motor_error = _status.error_status & ((uint32_t)ErrorStatus::MOTOR_INIT_ERROR | (uint32_t)ErrorStatus::MOTOR_OPERATION_ERROR | (uint32_t)ErrorStatus::GIMBAL_CONTROL_ERROR); _camera_error = _status.error_status & ((uint32_t)ErrorStatus::LENS_ERROR | (uint32_t)ErrorStatus::MEDIA_ERROR); return false; } // unhandled parameter get or set GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s get/set string %s res:%s", send_text_prefix, name, (const char*)value.data); return false; } void AP_Mount_Xacti::handle_param_save_response(AP_DroneCAN* ap_dronecan, const uint8_t node_id, bool success) { // display failure to save parameter if (!success) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s CAM%u failed to set param", send_text_prefix, (int)_instance+1); } } // get parameter name for a particular param enum value // returns an empty string if not found (which should never happen) const char* AP_Mount_Xacti::get_param_name_str(Param param) const { // check to avoid reading beyond end of array. This should never happen if ((uint8_t)param > ARRAY_SIZE(_param_names)) { INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); return ""; } return _param_names[(uint8_t)param]; } // helper function to set integer parameters bool AP_Mount_Xacti::set_param_int32(Param param, int32_t param_value) { if (_set_param_int32_queue == nullptr) { return false; } // set param request added to queue to be sent. throttling requests improves reliability return _set_param_int32_queue->push(SetParamQueueItem{param, param_value}); } // helper function to set string parameters bool AP_Mount_Xacti::set_param_string(Param param, const AP_DroneCAN::string& param_value) { if (_detected_modules[_instance].ap_dronecan == nullptr) { return false; } // convert param to string const char* param_name_str = get_param_name_str(param); if (param_name_str == nullptr) { return false; } if (_detected_modules[_instance].ap_dronecan->set_parameter_on_node(_detected_modules[_instance].node_id, param_name_str, param_value, ¶m_string_cb)) { last_send_getset_param_ms = AP_HAL::millis(); return true; } return false; } // helper function to get string parameters bool AP_Mount_Xacti::get_param_string(Param param) { if (_detected_modules[_instance].ap_dronecan == nullptr) { return false; } // convert param to string const char* param_name_str = get_param_name_str(param); if (_detected_modules[_instance].ap_dronecan->get_parameter_on_node(_detected_modules[_instance].node_id, param_name_str, ¶m_string_cb)) { last_send_getset_param_ms = AP_HAL::millis(); return true; } return false; } // process queue of set parameter items bool AP_Mount_Xacti::process_set_param_int32_queue() { if ((_set_param_int32_queue == nullptr) || (_detected_modules[_instance].ap_dronecan == nullptr)) { return false; } SetParamQueueItem param_to_set; if (_set_param_int32_queue->pop(param_to_set)) { // convert param to string const char* param_name_str = get_param_name_str(param_to_set.param); if (_detected_modules[_instance].ap_dronecan->set_parameter_on_node(_detected_modules[_instance].node_id, param_name_str, param_to_set.value, ¶m_int_cb)) { last_send_getset_param_ms = AP_HAL::millis(); return true; } return false; } return false; } // send gimbal control message via DroneCAN // mode is 2:angle control or 3:rate control // pitch_cd is pitch angle in centi-degrees or pitch rate in cds // yaw_cd is angle in centi-degrees or yaw rate in cds void AP_Mount_Xacti::send_gimbal_control(uint8_t mode, int16_t pitch_cd, int16_t yaw_cd) { // exit immediately if no DroneCAN port if (_detected_modules[_instance].ap_dronecan == nullptr) { return; } // send at no faster than 5hz const uint32_t now_ms = AP_HAL::millis(); if (now_ms - last_send_gimbal_control_ms < 200) { return; } last_send_gimbal_control_ms = now_ms; // send xacti specific gimbal control message com_xacti_GimbalControlData gimbal_control_data_msg {}; gimbal_control_data_msg.pitch_cmd_type = mode; gimbal_control_data_msg.yaw_cmd_type = mode; gimbal_control_data_msg.pitch_cmd_value = pitch_cd; gimbal_control_data_msg.yaw_cmd_value = -yaw_cd; _detected_modules[_instance].ap_dronecan->xacti_gimbal_control_data.broadcast(gimbal_control_data_msg); } // send copter attitude status message to gimbal. now_ms is current system time // returns true if sent so that we avoid immediately trying to also send other messages bool AP_Mount_Xacti::send_copter_att_status(uint32_t now_ms) { // exit immediately if no DroneCAN port if (_detected_modules[_instance].ap_dronecan == nullptr) { return false; } // send at no faster than 5hz if (now_ms - last_send_copter_att_status_ms < 100) { return false; } // send xacti specific vehicle attitude message Quaternion veh_att; if (!AP::ahrs().get_quaternion(veh_att)) { return false; } last_send_copter_att_status_ms = now_ms; com_xacti_CopterAttStatus copter_att_status_msg {}; copter_att_status_msg.quaternion_wxyz_e4[0] = veh_att.q1 * 1e4; copter_att_status_msg.quaternion_wxyz_e4[1] = veh_att.q2 * 1e4; copter_att_status_msg.quaternion_wxyz_e4[2] = veh_att.q3 * 1e4; copter_att_status_msg.quaternion_wxyz_e4[3] = veh_att.q4 * 1e4; copter_att_status_msg.reserved.len = 2; copter_att_status_msg.reserved.data[0] = 0; copter_att_status_msg.reserved.data[1] = 0; _detected_modules[_instance].ap_dronecan->xacti_copter_att_status.broadcast(copter_att_status_msg); return true; } // update zoom rate controller. now_ms is current system time // returns true if sent so that we avoid immediately trying to also send other messages bool AP_Mount_Xacti::update_zoom_rate_control(uint32_t now_ms) { // return immediately if zoom rate control is not enabled if (!_zoom_rate_control.enabled) { return false; } // we are controlling optical zoom if the camera has it and we are below the optical zoom upper limit // or at the optical zoom upper limit, the lower digital zoom limit and are zooming out bool optical_zoom_control = (capabilities.optical_zoom == Capability::True) && ((_last_optical_zoom_param_value < 250) || ((_last_optical_zoom_param_value == 250) && (_last_digital_zoom_param_value == 100) && (_zoom_rate_control.dir < 0))); // update every 0.25 or 0.5 sec const uint32_t update_interval_ms = optical_zoom_control ? XACTI_OPTICAL_ZOOM_RATE_UPDATE_INTERVAL_MS : XACTI_DIGITAL_ZOOM_RATE_UPDATE_INTERVAL_MS; if (now_ms - _zoom_rate_control.last_update_ms < update_interval_ms) { return false; } _zoom_rate_control.last_update_ms = now_ms; // optical zoom if (optical_zoom_control) { const uint16_t optical_zoom_value = _last_optical_zoom_param_value + _zoom_rate_control.dir * 10; // if reached lower limit of optical zoom, disable zoom control if (optical_zoom_value < 100) { _zoom_rate_control.enabled = false; return false; } // send desired optical zoom to camera return set_param_int32(Param::OpticalZoomMagnification, MIN(optical_zoom_value, 250)); } // digital zoom const uint16_t digital_zoom_value = _last_digital_zoom_param_value + _zoom_rate_control.dir * 100; // if reached limit then disable zoom if (((capabilities.optical_zoom != Capability::True) && (digital_zoom_value < 100)) || (digital_zoom_value > 1000)) { _zoom_rate_control.enabled = false; return false; } // send desired digital zoom to camera return set_param_int32(Param::DigitalZoomMagnification, digital_zoom_value); } // request firmware version. now_ms should be current system time (reduces calls to AP_HAL::millis) // returns true if sent so that we avoid immediately trying to also send other messages bool AP_Mount_Xacti::request_firmware_version(uint32_t now_ms) { // return immediately if already have version or no dronecan if (_firmware_version.received) { return false; } // send request once per second until received if (now_ms - _firmware_version.last_request_ms < 1000) { return false; } _firmware_version.last_request_ms = now_ms; return get_param_string(Param::FirmwareVersion); } // request parameters used to determine camera capabilities. now_ms is current system time // returns true if a param get/set was sent so that we avoid sending other messages bool AP_Mount_Xacti::request_capabilities(uint32_t now_ms) { // return immediately if we have already determined this models capabilities if (capabilities.received) { return false; } // send requests once per second until received if (now_ms - capabilities.last_request_ms < 1000) { return false; } capabilities.last_request_ms = now_ms; // record start time if (capabilities.first_request_ms == 0) { capabilities.first_request_ms = now_ms; } // timeout after 10 seconds if (now_ms - capabilities.first_request_ms > 10000) { capabilities.optical_zoom = Capability::False; capabilities.received = true; return false; } // optical zoom: try setting optical zoom to 1x // return is handled in handle_param_get_set_response_int return set_param_int32(Param::OpticalZoomMagnification, 100); } // set date and time. now_ms is current system time bool AP_Mount_Xacti::set_datetime(uint32_t now_ms) { // return immediately if gimbal's date/time has been set if (_datetime.set) { return false; } // attempt to set datetime once per second until received if (now_ms - _datetime.last_request_ms < 1000) { return false; } _datetime.last_request_ms = now_ms; // get date and time uint16_t year, ms; uint8_t month, day, hour, min, sec; #if AP_RTC_ENABLED if (!AP::rtc().get_date_and_time_utc(year, month, day, hour, min, sec, ms)) { return false; } #else (void)ms; return false; #endif // date time is of the format YYYYMMDDHHMMSS (14 bytes) // convert month from 0~11 to 1~12 range AP_DroneCAN::string datetime_string {}; const int num_bytes = snprintf((char *)datetime_string.data, sizeof(AP_DroneCAN::string::data), "%04u%02u%02u%02u%02u%02u", (unsigned)year, (unsigned)month+1, (unsigned)day, (unsigned)hour, (unsigned)min, (unsigned)sec); // sanity check bytes to be sent if (num_bytes != 14) { INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); return false; } datetime_string.len = num_bytes; _datetime.set = set_param_string(Param::DateTime, datetime_string); if (!_datetime.set) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s failed to set date/time", send_text_prefix); } return _datetime.set; } // request status. now_ms should be current system time (reduces calls to AP_HAL::millis) // returns true if sent so that we avoid immediately trying to also send other messages bool AP_Mount_Xacti::request_status(uint32_t now_ms) { // return immediately if 3 seconds has not passed if (now_ms - _status_report.last_request_ms < XACTI_STATUS_REQ_INTERVAL_MS) { return false; } _status_report.last_request_ms = now_ms; return get_param_string(Param::Status); } // check if safe to send message (if messages sent too often camera will not respond) // now_ms should be current system time (reduces calls to AP_HAL::millis) bool AP_Mount_Xacti::is_safe_to_send(uint32_t now_ms) const { // check time since last attitude sent if (now_ms - last_send_copter_att_status_ms < XACTI_MSG_SEND_MIN_MS) { return false; } // check time since last angle target sent if (now_ms - last_send_gimbal_control_ms < XACTI_MSG_SEND_MIN_MS) { return false; } // check time since last set param message sent if (now_ms - last_send_getset_param_ms < XACTI_MSG_SEND_MIN_MS) { return false; } return true; } #endif // HAL_MOUNT_XACTI_ENABLED