/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /********************************************************************************/ // Command Event Handlers /********************************************************************************/ static void process_nav_command() { switch(command_nav_queue.id) { case MAV_CMD_NAV_TAKEOFF: // 22 do_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: // 16 Navigate to Waypoint do_nav_wp(); break; case MAV_CMD_NAV_LAND: // 21 LAND to Waypoint yaw_mode = YAW_HOLD; do_land(); break; case MAV_CMD_NAV_LOITER_UNLIM: // 17 Loiter indefinitely do_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: //18 Loiter N Times do_loiter_turns(); break; case MAV_CMD_NAV_LOITER_TIME: // 19 do_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: //20 do_RTL(); break; // point the copter and camera at a region of interest (ROI) case MAV_CMD_NAV_ROI: // 80 do_nav_roi(); break; default: break; } } static void process_cond_command() { switch(command_cond_queue.id) { case MAV_CMD_CONDITION_DELAY: // 112 do_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: // 114 do_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: // 113 do_change_alt(); break; case MAV_CMD_CONDITION_YAW: // 115 do_yaw(); break; default: break; } } static void process_now_command() { switch(command_cond_queue.id) { case MAV_CMD_DO_JUMP: // 177 do_jump(); break; case MAV_CMD_DO_CHANGE_SPEED: // 178 do_change_speed(); break; case MAV_CMD_DO_SET_HOME: // 179 do_set_home(); break; case MAV_CMD_DO_SET_SERVO: // 183 do_set_servo(); break; case MAV_CMD_DO_SET_RELAY: // 181 do_set_relay(); break; case MAV_CMD_DO_REPEAT_SERVO: // 184 do_repeat_servo(); break; case MAV_CMD_DO_REPEAT_RELAY: // 182 do_repeat_relay(); break; #if CAMERA == ENABLED case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| break; case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| break; case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| break; #endif #if MOUNT == ENABLED case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty| camera_mount.configure_cmd(); break; case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty| camera_mount.control_cmd(); break; #endif default: // do nothing with unrecognized MAVLink messages break; } } /********************************************************************************/ // Verify command Handlers /********************************************************************************/ static bool verify_must() { switch(command_nav_queue.id) { case MAV_CMD_NAV_TAKEOFF: return verify_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(); break; case MAV_CMD_NAV_LAND: if(g.sonar_enabled == true) { return verify_land_sonar(); }else{ return verify_land_baro(); } break; case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: return verify_loiter_turns(); break; case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); break; case MAV_CMD_NAV_ROI: // 80 return verify_nav_roi(); break; default: //gcs_send_text_P(SEVERITY_HIGH,PSTR(" No current Must commands")); return false; break; } } static bool verify_may() { switch(command_cond_queue.id) { case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: return verify_change_alt(); break; case MAV_CMD_CONDITION_YAW: return verify_yaw(); break; default: //gcs_send_text_P(SEVERITY_HIGH,PSTR(" No current May commands")); return false; break; } } /********************************************************************************/ // /********************************************************************************/ static void do_RTL(void) { // TODO: Altitude option from mission planner Location temp = home; temp.alt = get_RTL_alt(); //so we know where we are navigating from // -------------------------------------- next_WP = current_loc; // Loads WP from Memory // -------------------- set_next_WP(&temp); // We want to come home and stop on a dime slow_wp = true; // output control mode to the ground station // ----------------------------------------- gcs_send_message(MSG_HEARTBEAT); } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ static void do_takeoff() { wp_control = LOITER_MODE; // Start with current location Location temp = current_loc; // alt is always relative temp.alt = command_nav_queue.alt; // prevent flips reset_I_all(); // Set our waypoint set_next_WP(&temp); } static void do_nav_wp() { wp_control = WP_MODE; slow_wp = false; set_next_WP(&command_nav_queue); // this is our bitmask to verify we have met all conditions to move on wp_verify_byte = 0; // this will be used to remember the time in millis after we reach or pass the WP. loiter_time = 0; // this is the delay, stored in seconds and expanded to millis loiter_time_max = command_nav_queue.p1 * 1000; if((next_WP.options & WP_OPTION_ALT_REQUIRED) == false) { wp_verify_byte |= NAV_ALTITUDE; } } static void do_land() { wp_control = LOITER_MODE; // just to make sure land_complete = false; // landing boost lowers the main throttle to mimmick // the effect of a user's hand landing_boost = 0; // A counter that goes up if our climb rate stalls out. ground_detector = 0; // hold at our current location set_next_WP(¤t_loc); // Set a new target altitude set_new_altitude(0); } static void do_loiter_unlimited() { wp_control = LOITER_MODE; //Serial.println("dloi "); if(command_nav_queue.lat == 0) { set_next_WP(¤t_loc); wp_control = LOITER_MODE; }else{ set_next_WP(&command_nav_queue); wp_control = WP_MODE; } } static void do_loiter_turns() { wp_control = CIRCLE_MODE; if(command_nav_queue.lat == 0) { // allow user to specify just the altitude if(command_nav_queue.alt > 0) { current_loc.alt = command_nav_queue.alt; } set_next_WP(¤t_loc); }else{ set_next_WP(&command_nav_queue); } circle_WP = next_WP; loiter_total = command_nav_queue.p1 * 360; loiter_sum = 0; old_target_bearing = target_bearing; circle_angle = target_bearing + 18000; circle_angle = wrap_360(circle_angle); circle_angle *= RADX100; } static void do_loiter_time() { if(command_nav_queue.lat == 0) { wp_control = LOITER_MODE; loiter_time = millis(); set_next_WP(¤t_loc); }else{ wp_control = WP_MODE; set_next_WP(&command_nav_queue); } loiter_time_max = command_nav_queue.p1 * 1000; // units are (seconds) } /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ static bool verify_takeoff() { // wait until we are ready! if(g.rc_3.control_in == 0) { return false; } // are we above our target altitude? return (current_loc.alt > next_WP.alt); } // called at 10hz static bool verify_land_sonar() { if(current_loc.alt > 300) { wp_control = LOITER_MODE; ground_detector = 0; }else{ // begin to pull down on the throttle landing_boost++; landing_boost = min(landing_boost, 40); } if(current_loc.alt < 200 ) { wp_control = NO_NAV_MODE; } if(current_loc.alt < 150 ) { // if we are low or don't seem to be decending much, increment ground detector if(current_loc.alt < 80 || abs(climb_rate) < 20) { landing_boost++; // reduce the throttle at twice the normal rate if(ground_detector < 30) { ground_detector++; }else if (ground_detector == 30) { land_complete = true; if(g.rc_3.control_in == 0) { ground_detector++; init_disarm_motors(); } return true; } } } return false; } static bool verify_land_baro() { if(current_loc.alt > 300) { wp_control = LOITER_MODE; ground_detector = 0; }else{ // begin to pull down on the throttle landing_boost++; landing_boost = min(landing_boost, 40); } if(current_loc.alt < 100 ) { wp_control = NO_NAV_MODE; } if(current_loc.alt < 200 ) { if(abs(climb_rate) < 40) { landing_boost++; if(ground_detector < 30) { ground_detector++; }else if (ground_detector == 30) { land_complete = true; if(g.rc_3.control_in == 0) { ground_detector++; init_disarm_motors(); } return true; } } } return false; } static bool verify_nav_wp() { // Altitude checking if(next_WP.options & WP_OPTION_ALT_REQUIRED) { // we desire a certain minimum altitude if(alt_change_flag == REACHED_ALT) { // we have reached that altitude wp_verify_byte |= NAV_ALTITUDE; } } // Did we pass the WP? // Distance checking if((wp_distance <= (waypoint_radius * 100)) || check_missed_wp()) { // if we have a distance calc error, wp_distance may be less than 0 if(wp_distance > 0) { wp_verify_byte |= NAV_LOCATION; if(loiter_time == 0) { loiter_time = millis(); } } } // Hold at Waypoint checking, we cant move on until this is OK if(wp_verify_byte & NAV_LOCATION) { // we have reached our goal // loiter at the WP wp_control = LOITER_MODE; if ((millis() - loiter_time) > loiter_time_max) { wp_verify_byte |= NAV_DELAY; //gcs_send_text_P(SEVERITY_LOW,PSTR("verify_must: LOITER time complete")); //Serial.println("vlt done"); } } if(wp_verify_byte >= 7) { //if(wp_verify_byte & NAV_LOCATION){ char message[30]; sprintf(message,"Reached Command #%i",command_nav_index); gcs_send_text(SEVERITY_LOW,message); wp_verify_byte = 0; copter_leds_nav_blink = 15; // Cause the CopterLEDs to blink three times to indicate waypoint reached return true; }else{ return false; } } static bool verify_loiter_unlimited() { if(wp_control == WP_MODE && wp_distance <= (g.waypoint_radius * 100)) { // switch to position hold wp_control = LOITER_MODE; } return false; } static bool verify_loiter_time() { if(wp_control == LOITER_MODE) { if ((millis() - loiter_time) > loiter_time_max) { return true; } } if(wp_control == WP_MODE && wp_distance <= (g.waypoint_radius * 100)) { // reset our loiter time loiter_time = millis(); // switch to position hold wp_control = LOITER_MODE; } return false; } static bool verify_loiter_turns() { //Serial.printf("loiter_sum: %d \n", loiter_sum); // have we rotated around the center enough times? // ----------------------------------------------- if(abs(loiter_sum) > loiter_total) { loiter_total = 0; loiter_sum = 0; //gcs_send_text_P(SEVERITY_LOW,PSTR("verify_must: LOITER orbits complete")); // clear the command queue; return true; } return false; } static bool verify_RTL() { wp_control = WP_MODE; // Did we pass the WP? // Distance checking if((wp_distance <= (g.waypoint_radius * 100)) || check_missed_wp()) { wp_control = LOITER_MODE; //gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home")); return true; }else{ return false; } } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ static void do_wait_delay() { //Serial.print("dwd "); condition_start = millis(); condition_value = command_cond_queue.lat * 1000; // convert to milliseconds //Serial.println(condition_value,DEC); } static void do_change_alt() { Location temp = next_WP; condition_start = current_loc.alt; //condition_value = command_cond_queue.alt; temp.alt = command_cond_queue.alt; set_next_WP(&temp); } static void do_within_distance() { condition_value = command_cond_queue.lat * 100; } static void do_yaw() { //Serial.println("dyaw "); yaw_tracking = MAV_ROI_NONE; // target angle in degrees command_yaw_start = nav_yaw; // current position command_yaw_start_time = millis(); command_yaw_dir = command_cond_queue.p1; // 1 = clockwise, 0 = counterclockwise command_yaw_speed = command_cond_queue.lat * 100; // ms * 100 command_yaw_relative = command_cond_queue.lng; // 1 = Relative, 0 = Absolute // if unspecified turn at 30° per second if(command_yaw_speed == 0) command_yaw_speed = 3000; // ensure direction is valid, if invalid default to counter clockwise if(command_yaw_dir > 1) command_yaw_dir = 0; // 0 = counter clockwise, 1 = clockwise if(command_yaw_relative == 1) { // relative command_yaw_delta = command_cond_queue.alt * 100; if(command_yaw_dir == 0) { // 0 = counter clockwise, 1 = clockwise command_yaw_end = command_yaw_start - command_yaw_delta; }else{ command_yaw_end = command_yaw_start + command_yaw_delta; } command_yaw_end = wrap_360(command_yaw_end); }else{ // absolute command_yaw_end = command_cond_queue.alt * 100; // calculate the delta travel in deg * 100 if(command_yaw_dir == 0) { // 0 = counter clockwise, 1 = clockwise if(command_yaw_start > command_yaw_end) { command_yaw_delta = command_yaw_start - command_yaw_end; }else{ command_yaw_delta = 36000 + (command_yaw_start - command_yaw_end); } }else{ if(command_yaw_start >= command_yaw_end) { command_yaw_delta = 36000 - (command_yaw_start - command_yaw_end); }else{ command_yaw_delta = command_yaw_end - command_yaw_start; } } command_yaw_delta = wrap_360(command_yaw_delta); } // rate to turn deg per second - default is ten command_yaw_time = (command_yaw_delta / command_yaw_speed) * 1000; } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ static bool verify_wait_delay() { //Serial.print("vwd"); if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) { //Serial.println("y"); condition_value = 0; return true; } //Serial.println("n"); return false; } static bool verify_change_alt() { //Serial.printf("change_alt, ca:%d, na:%d\n", (int)current_loc.alt, (int)next_WP.alt); if ((int32_t)condition_start < next_WP.alt) { // we are going higer if(current_loc.alt > next_WP.alt) { return true; } }else{ // we are going lower if(current_loc.alt < next_WP.alt) { return true; } } return false; } static bool verify_within_distance() { //Serial.printf("cond dist :%d\n", (int)condition_value); if (wp_distance < condition_value) { condition_value = 0; return true; } return false; } static bool verify_yaw() { //Serial.printf("vyaw %d\n", (int)(nav_yaw/100)); if((millis() - command_yaw_start_time) > command_yaw_time) { // time out // make sure we hold at the final desired yaw angle nav_yaw = command_yaw_end; auto_yaw = nav_yaw; // TO-DO: there's still a problem with Condition_yaw, it will do it two times(probably more) sometimes, if it hasn't reached the next waypoint yet. // it should only do it one time so there should be code here to prevent another Condition_Yaw. //Serial.println("Y"); return true; }else{ // else we need to be at a certain place // power is a ratio of the time : .5 = half done float power = (float)(millis() - command_yaw_start_time) / (float)command_yaw_time; if(command_yaw_dir == 0) { // 0 = counter clockwise, 1 = clockwise nav_yaw = command_yaw_start - ((float)command_yaw_delta * power ); }else{ nav_yaw = command_yaw_start + ((float)command_yaw_delta * power ); } nav_yaw = wrap_360(nav_yaw); auto_yaw = nav_yaw; //Serial.printf("ny %ld\n",nav_yaw); return false; } } // verify_nav_roi - verifies that actions required by MAV_CMD_NAV_ROI have completed // we assume the camera command has been successfully implemented by the do_nav_roi command // so all we need to check is whether we needed to yaw the copter (due to the mount type) and // whether that yaw has completed // TO-DO: add support for other features of MAV_NAV_ROI including pointing at a given waypoint static bool verify_nav_roi() { #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if( camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll ) { // ensure yaw has gotten to within 2 degrees of the target if( labs(wrap_180(ahrs.yaw_sensor-auto_yaw)) <= 200 ) { nav_yaw = auto_yaw; // ensure target yaw for YAW_HOLD is our desired yaw return true; }else{ return false; } }else{ // if no rotation required, assume the camera instruction was implemented immediately return true; } #else // if we have no camera mount simply check we've reached the desired yaw // ensure yaw has gotten to within 2 degrees of the target if( abs(wrap_180(ahrs.yaw_sensor-auto_yaw)) <= 200 ) { nav_yaw = auto_yaw; // ensure target yaw for YAW_HOLD is our desired yaw return true; }else{ return false; } #endif } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ static void do_change_speed() { g.waypoint_speed_max = command_cond_queue.p1 * 100; } static void do_target_yaw() { yaw_tracking = command_cond_queue.p1; if(yaw_tracking == MAV_ROI_LOCATION) { target_WP = command_cond_queue; } } static void do_loiter_at_location() { next_WP = current_loc; } static void do_jump() { // Used to track the state of the jump command in Mission scripting // -10 is a value that means the register is unused // when in use, it contains the current remaining jumps static int8_t jump = -10; // used to track loops in jump command //Serial.printf("do Jump: %d\n", jump); if(jump == -10) { //Serial.printf("Fresh Jump\n"); // we use a locally stored index for jump jump = command_cond_queue.lat; } //Serial.printf("Jumps left: %d\n",jump); if(jump > 0) { //Serial.printf("Do Jump to %d\n",command_cond_queue.p1); jump--; change_command(command_cond_queue.p1); } else if (jump == 0) { //Serial.printf("Did last jump\n"); // we're done, move along jump = -11; } else if (jump == -1) { //Serial.printf("jumpForever\n"); // repeat forever change_command(command_cond_queue.p1); } } static void do_set_home() { if(command_cond_queue.p1 == 1) { init_home(); } else { home.id = MAV_CMD_NAV_WAYPOINT; home.lng = command_cond_queue.lng; // Lon * 10**7 home.lat = command_cond_queue.lat; // Lat * 10**7 home.alt = 0; home_is_set = true; } } static void do_set_servo() { APM_RC.OutputCh(command_cond_queue.p1 - 1, command_cond_queue.alt); } static void do_set_relay() { if (command_cond_queue.p1 == 1) { relay.on(); } else if (command_cond_queue.p1 == 0) { relay.off(); }else{ relay.toggle(); } } static void do_repeat_servo() { event_id = command_cond_queue.p1 - 1; if(command_cond_queue.p1 >= CH_5 + 1 && command_cond_queue.p1 <= CH_8 + 1) { event_timer = 0; event_value = command_cond_queue.alt; event_repeat = command_cond_queue.lat * 2; event_delay = command_cond_queue.lng * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds) switch(command_cond_queue.p1) { case CH_5: event_undo_value = g.rc_5.radio_trim; break; case CH_6: event_undo_value = g.rc_6.radio_trim; break; case CH_7: event_undo_value = g.rc_7.radio_trim; break; case CH_8: event_undo_value = g.rc_8.radio_trim; break; } update_events(); } } static void do_repeat_relay() { event_id = RELAY_TOGGLE; event_timer = 0; event_delay = command_cond_queue.lat * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds) event_repeat = command_cond_queue.alt * 2; update_events(); } // do_nav_roi - starts actions required by MAV_CMD_NAV_ROI // this involves either moving the camera to point at the ROI (region of interest) // and possibly rotating the copter to point at the ROI if our mount type does not support a yaw feature // Note: the ROI should already be in the command_nav_queue global variable // TO-DO: add support for other features of MAV_NAV_ROI including pointing at a given waypoint static void do_nav_roi() { #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if( camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll ) { yaw_tracking = MAV_ROI_LOCATION; target_WP = command_nav_queue; auto_yaw = get_bearing_cd(¤t_loc, &target_WP); } // send the command to the camera mount camera_mount.set_roi_cmd(&command_nav_queue); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implmented) #else // if we have no camera mount simply rotate the quad yaw_tracking = MAV_ROI_LOCATION; target_WP = command_nav_queue; auto_yaw = get_bearing_cd(¤t_loc, &target_WP); #endif }