/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Rover.h" void Rover::read_control_switch() { static bool switch_debouncer; uint8_t switchPosition = readSwitch(); // If switchPosition = 255 this indicates that the mode control channel input was out of range // If we get this value we do not want to change modes. if(switchPosition == 255) return; if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 100) { // only use signals that are less than 0.1s old. return; } // we look for changes in the switch position. If the // RST_SWITCH_CH parameter is set, then it is a switch that can be // used to force re-reading of the control switch. This is useful // when returning to the previous mode after a failsafe or fence // breach. This channel is best used on a momentary switch (such // as a spring loaded trainer switch). if (oldSwitchPosition != switchPosition || (g.reset_switch_chan != 0 && hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) { if (switch_debouncer == false) { // this ensures that mode switches only happen if the // switch changes for 2 reads. This prevents momentary // spikes in the mode control channel from causing a mode // switch switch_debouncer = true; return; } set_mode((enum mode)modes[switchPosition].get()); oldSwitchPosition = switchPosition; prev_WP = current_loc; // reset speed integrator g.pidSpeedThrottle.reset_I(); } switch_debouncer = false; } uint8_t Rover::readSwitch(void){ uint16_t pulsewidth = hal.rcin->read(g.mode_channel - 1); if (pulsewidth <= 900 || pulsewidth >= 2200) return 255; // This is an error condition if (pulsewidth <= 1230) return 0; if (pulsewidth <= 1360) return 1; if (pulsewidth <= 1490) return 2; if (pulsewidth <= 1620) return 3; if (pulsewidth <= 1749) return 4; // Software Manual return 5; // Hardware Manual } void Rover::reset_control_switch() { oldSwitchPosition = 254; read_control_switch(); } #define CH_7_PWM_TRIGGER 1800 // read at 10 hz // set this to your trainer switch void Rover::read_trim_switch() { switch ((enum ch7_option)g.ch7_option.get()) { case CH7_DO_NOTHING: break; case CH7_SAVE_WP: if (channel_learn->get_radio_in() > CH_7_PWM_TRIGGER) { // switch is engaged ch7_flag = true; } else { // switch is disengaged if (ch7_flag) { ch7_flag = false; if (control_mode == MANUAL) { hal.console->println("Erasing waypoints"); // if SW7 is ON in MANUAL = Erase the Flight Plan mission.clear(); if (channel_steer->get_control_in() > 3000) { // if roll is full right store the current location as home init_home(); } return; } else if (control_mode == LEARNING || control_mode == STEERING) { // if SW7 is ON in LEARNING = record the Wp // create new mission command AP_Mission::Mission_Command cmd = {}; // set new waypoint to current location cmd.content.location = current_loc; // make the new command to a waypoint cmd.id = MAV_CMD_NAV_WAYPOINT; // save command if(mission.add_cmd(cmd)) { hal.console->printf("Learning waypoint %u", (unsigned)mission.num_commands()); } } else if (control_mode == AUTO) { // if SW7 is ON in AUTO = set to RTL set_mode(RTL); } } } break; } } bool Rover::motor_active() { // Check if armed and throttle is not neutral if (hal.util->get_soft_armed()) { if (!channel_throttle->in_trim_dz()) { return true; } } return false; }