// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include "RcAioPRU_bin.h"
#define NUM_RING_ENTRIES 300
#define RCOUT_PRUSS_RAM_BASE 0x4a302000
#define RCOUT_PRUSS_CTRL_BASE 0x4a324000
#define RCOUT_PRUSS_IRAM_BASE 0x4a338000
#define RCIN_PRUSS_RAM_BASE 0x4a303000
struct ring_buffer {
volatile uint16_t ring_head;
volatile uint16_t ring_tail;
struct {
uint32_t s1;
uint32_t s0;
} buffer[NUM_RING_ENTRIES];
};
struct pwm {
volatile uint32_t enable;
volatile uint32_t ch1_hi_time;
volatile uint32_t ch1_t_time;
volatile uint32_t ch2_hi_time;
volatile uint32_t ch2_t_time;
volatile uint32_t ch3_hi_time;
volatile uint32_t ch3_t_time;
volatile uint32_t ch4_hi_time;
volatile uint32_t ch4_t_time;
volatile uint32_t ch5_hi_time;
volatile uint32_t ch5_t_time;
volatile uint32_t ch6_hi_time;
volatile uint32_t ch6_t_time;
volatile uint32_t ch7_hi_time;
volatile uint32_t ch7_t_time;
volatile uint32_t ch8_hi_time;
volatile uint32_t ch8_t_time;
volatile uint32_t ch9_hi_time;
volatile uint32_t ch9_t_time;
volatile uint32_t ch10_hi_time;
volatile uint32_t ch10_t_time;
volatile uint32_t ch11_hi_time;
volatile uint32_t ch11_t_time;
volatile uint32_t ch12_hi_time;
volatile uint32_t ch12_t_time;
volatile uint32_t max_cycle_time;
};
volatile struct ring_buffer *ring_buffer;
volatile struct pwm *pwm;
int main (void)
{
unsigned int ret, i, a, s0, s1, min_s0, min_s1, max_s0, max_s1;
uint32_t mem_fd;
uint32_t *iram;
uint32_t *ctrl;
mem_fd = open("/dev/mem", O_RDWR|O_SYNC);
ring_buffer = (struct ring_buffer*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCIN_PRUSS_RAM_BASE);
pwm = (struct pwm*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_RAM_BASE);
iram = (uint32_t*)mmap(0, 0x2000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_IRAM_BASE);
ctrl = (uint32_t*)mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_CTRL_BASE);
close(mem_fd);
// Reset PRU 1
*ctrl = 0;
usleep(5 * 1000);
// Load firmware
for(i = 0; i < sizeof(PRUcode); i++) {
*(iram + i) = PRUcode[i];
}
usleep(5 * 1000);
// Start PRU 1
*ctrl = 3;
i = 1;
a = 0;
min_s0 = 0xffffffff;
min_s1 = 0xffffffff;
max_s0 = 0;
max_s1 = 0;
pwm->ch1_t_time = 200 * 2200;
pwm->ch2_t_time = 200 * 2300;
pwm->ch3_t_time = 200 * 2400;
pwm->ch4_t_time = 200 * 2500;
pwm->ch5_t_time = 200 * 2600;
pwm->ch6_t_time = 200 * 2700;
pwm->ch7_t_time = 200 * 2800;
pwm->ch8_t_time = 200 * 2900;
pwm->ch9_t_time = 200 * 3000;
pwm->ch10_t_time = 200 * 3100;
pwm->ch11_t_time = 200 * 3200;
pwm->ch12_t_time = 200 * 3300;
pwm->enable=0xffffffff;
while(1) {
for(a = 0; a < NUM_RING_ENTRIES; a++) {
s0 = ring_buffer->buffer[a].s0;
s1 = ring_buffer->buffer[a].s1;
if((s0 > max_s0) && (s0 != 1001)) {max_s0 = s0;}
if((s1 > max_s1) && (s1 != 1001)) {max_s1 = s1;}
if((s0 < min_s0) && (s0 != 1001)) {min_s0 = s0;}
if((s1 < min_s1) && (s1 != 1001)) {min_s1 = s1;}
}
s0 = ring_buffer->buffer[ring_buffer->ring_tail].s0;
s1 = ring_buffer->buffer[ring_buffer->ring_tail].s1;
printf("max ct: %u ns head: %u tail: %3u s0: %7u s1: %7u s01: %7u jitter_s0 %u ns jitter_s1 %u ns\n", pwm->max_cycle_time * 5, ring_buffer->ring_head, ring_buffer->ring_tail, s0/200, s1/200, (s0+s1)/200, ((max_s0-min_s0) * 5), ((max_s1-min_s1) * 5));
// pwm->ch1_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch2_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch1_hi_time = 1000 * 200;
// pwm->ch2_hi_time = 1500 * 200;
pwm->ch3_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch4_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch5_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch6_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch7_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch8_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch9_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch10_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch11_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
pwm->ch12_hi_time = (uint32_t)((rand() % 1001 + 900) * 200);
usleep(50 * 1000);
if(i < 100) {
min_s0 = 0xffffffff;
min_s1 = 0xffffffff;
max_s0 = 0;
max_s1 = 0;
i++;
}
else if(((max_s1 - min_s1) * 5) > 1001000) {
i = 500;
}
}
return 0;
}