// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // This is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License as published by the // Free Software Foundation; either version 2.1 of the License, or (at // your option) any later version. // /// @file AP_Param.h /// @brief A system for managing and storing variables that are of /// general interest to the system. #ifndef AP_PARAM_H #define AP_PARAM_H #include #include #include #include #include #include #define AP_MAX_NAME_SIZE 15 // a varient of offsetof() to work around C++ restrictions. // this can only be used when the offset of a variable in a object // is constant and known at compile time #define AP_VAROFFSET(type, element) (((uintptr_t)(&((const type *)1)->element))-1) // find the type of a variable given the class and element #define AP_CLASSTYPE(class, element) (((const class *)1)->element.vtype) // declare a group var_info line #define AP_GROUPINFO(name, idx, class, element) { AP_CLASSTYPE(class, element), idx, name, AP_VAROFFSET(class, element) } // declare a nested group entry in a group var_info #define AP_NESTEDGROUPINFO(class, idx) { AP_PARAM_GROUP, idx, "", 0, class::var_info } #define AP_GROUPEND { AP_PARAM_NONE, 0xFF, "" } enum ap_var_type { AP_PARAM_NONE = 0, AP_PARAM_INT8, AP_PARAM_INT16, AP_PARAM_INT32, AP_PARAM_FLOAT, AP_PARAM_VECTOR3F, AP_PARAM_VECTOR6F, AP_PARAM_MATRIX3F, AP_PARAM_GROUP }; /// Base class for variables. /// /// Provides naming and lookup services for variables. /// class AP_Param { public: // the Info and GroupInfo structures are passed by the main // program in setup() to give information on how variables are // named and their location in memory struct GroupInfo { uint8_t type; // AP_PARAM_* uint8_t idx; // identifier within the group const char name[AP_MAX_NAME_SIZE]; uintptr_t offset; // offset within the object const struct GroupInfo *group_info; }; struct Info { uint8_t type; // AP_PARAM_* const char name[AP_MAX_NAME_SIZE]; uint8_t key; // k_param_* void *ptr; // pointer to the variable in memory const struct GroupInfo *group_info; }; // called once at startup to setup the _var_info[] table. This // will also check the EEPROM header and re-initialise it if the // wrong version is found static bool setup(const struct Info *info, uint8_t num_vars, uint16_t eeprom_size); // return true if AP_Param has been initialised via setup() static bool initialised(void); /// Copy the variable's name, prefixed by any containing group name, to a buffer. /// /// If the variable has no name, the buffer will contain an empty string. /// /// Note that if the combination of names is larger than the buffer, the /// result in the buffer will be truncated. /// /// @param buffer The destination buffer /// @param bufferSize Total size of the destination buffer. /// void copy_name(char *buffer, size_t bufferSize); /// Find a variable by name. /// /// If the variable has no name, it cannot be found by this interface. /// /// @param name The full name of the variable to be found. /// @return A pointer to the variable, or NULL if /// it does not exist. /// static AP_Param *find(const char *name, enum ap_var_type *ptype); /// Save the current value of the variable to EEPROM. /// /// @return True if the variable was saved successfully. /// bool save(void); /// Load the variable from EEPROM. /// /// @return True if the variable was loaded successfully. /// bool load(void); /// Load all variables from EEPROM /// /// This function performs a best-efforts attempt to load all /// of the variables from EEPROM. If some fail to load, their /// values will remain as they are. /// /// @return False if any variable failed to load /// static bool load_all(void); /// Erase all variables in EEPROM. /// static void erase_all(void); /// print the value of all variables static void show_all(void); /// Returns the first variable /// /// @return The first variable in _var_info, or NULL if /// there are none. /// static AP_Param *first(uint16_t *token, enum ap_var_type *ptype); /// Returns the next variable in _var_info, recursing into groups /// as needed static AP_Param *next(uint16_t *token, enum ap_var_type *ptype); /// Returns the next scalar variable in _var_info, recursing into groups /// as needed static AP_Param *next_scalar(uint16_t *token, enum ap_var_type *ptype); /// cast a variable to a float given its type float cast_to_float(enum ap_var_type type); private: /// EEPROM header /// /// This structure is placed at the head of the EEPROM to indicate /// that the ROM is formatted for AP_Param. /// struct EEPROM_header { uint8_t magic[2]; uint8_t revision; uint8_t spare; }; // This header is prepended to a variable stored in EEPROM. struct Param_header { uint8_t key; uint8_t group_element; uint8_t type; }; // number of bits in each level of nesting of groups static const uint8_t _group_level_shift = 4; static const uint8_t _group_bits = 8; static const uint8_t _sentinal_key = 0xFF; static const uint8_t _sentinal_type = 0xFF; static const uint8_t _sentinal_group = 0xFF; static bool check_group_info(const struct GroupInfo *group_info, uint16_t *total_size, uint8_t max_bits); static bool check_var_info(void); const struct Info *find_var_info_group(const struct GroupInfo *group_info, uint8_t vindex, uint8_t group_base, uint8_t group_shift, uint8_t *group_element, const struct GroupInfo **group_ret); const struct Info *find_var_info(uint8_t *group_element, const struct GroupInfo **group_ret); static const struct Info *find_by_header_group(struct Param_header phdr, void **ptr, uint8_t vindex, const struct GroupInfo *group_info, uint8_t group_base, uint8_t group_shift); static const struct Info *find_by_header(struct Param_header phdr, void **ptr); static AP_Param *find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype); static void write_sentinal(uint16_t ofs); bool scan(const struct Param_header *phdr, uint16_t *pofs); static const uint8_t type_size(enum ap_var_type type); static void eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size); static AP_Param *next_group(uint8_t vindex, const struct GroupInfo *group_info, bool *found_current, uint8_t group_base, uint8_t group_shift, uint16_t *token, enum ap_var_type *ptype); static uint16_t _eeprom_size; static uint8_t _num_vars; static const struct Info *_var_info; // values filled into the EEPROM header static const uint8_t k_EEPROM_magic0 = 0x50; static const uint8_t k_EEPROM_magic1 = 0x41; ///< "AP" static const uint8_t k_EEPROM_revision = 5; ///< current format revision }; /// Template class for scalar variables. /// /// Objects of this type have a value, and can be treated in many ways as though they /// were the value. /// /// @tparam T The scalar type of the variable /// @tparam PT The AP_PARAM_* type /// template class AP_ParamT : public AP_Param { public: /// Constructor for scalar variable. /// /// Initialises a stand-alone variable with optional initial value. /// /// @param default_value Value the variable should have at startup. /// AP_ParamT (const T initial_value = 0) : AP_Param(), _value(initial_value) { } static const ap_var_type vtype = PT; /// Value getter /// T get(void) const { return _value; } /// Value setter /// void set(T v) { _value = v; } /// Combined set and save /// bool set_and_save(T v) { set(v); return save(); } /// Combined set and save, but only does the save if the value if /// different from the current ram value, thus saving us a /// scan(). This should only be used where we have not set() the /// value separately, as otherwise the value in EEPROM won't be /// updated correctly. bool set_and_save_ifchanged(T v) { if (v == _value) { return true; } set(v); return save(); } /// Conversion to T returns a reference to the value. /// /// This allows the class to be used in many situations where the value would be legal. /// operator T &() { return _value; } /// Copy assignment from self does nothing. /// AP_ParamT& operator=(AP_ParamT& v) { return v; } /// Copy assignment from T is equivalent to ::set. /// AP_ParamT& operator=(T v) { _value = v; return *this; } /// AP_ParamT types can implement AP_Param::cast_to_float /// float cast_to_float(void) { return (float)_value; } protected: T _value; }; /// Template class for non-scalar variables. /// /// Objects of this type have a value, and can be treated in many ways as though they /// were the value. /// /// @tparam T The scalar type of the variable /// @tparam PT AP_PARAM_* type /// template class AP_ParamV : public AP_Param { public: static const ap_var_type vtype = PT; /// Value getter /// T get(void) const { return _value; } /// Value setter /// void set(T v) { _value = v; } /// Combined set and save /// bool set_and_save(T v) { set(v); return save(); } /// Conversion to T returns a reference to the value. /// /// This allows the class to be used in many situations where the value would be legal. /// operator T &() { return _value; } /// Copy assignment from self does nothing. /// AP_ParamV& operator=(AP_ParamV& v) { return v; } /// Copy assignment from T is equivalent to ::set. /// AP_ParamV& operator=(T v) { _value = v; return *this; } protected: T _value; }; /// Template class for array variables. /// /// Objects created using this template behave like arrays of the type T, /// but are stored like single variables. /// /// @tparam T The scalar type of the variable /// @tparam N number of elements /// @tparam PT the AP_PARAM_* type /// template class AP_ParamA : public AP_Param { public: static const ap_var_type vtype = PT; /// Array operator accesses members. /// /// @note It would be nice to range-check i here, but then what would we return? /// T &operator [](uint8_t i) { return _value[i]; } /// Value getter /// /// @note Returns zero for index values out of range. /// T get(uint8_t i) const { if (i < N) { return _value[i]; } else { return (T)0; } } /// Value setter /// /// @note Attempts to set an index out of range are discarded. /// void set(uint8_t i, T v) { if (i < N) { _value[i] = v; } } /// Copy assignment from self does nothing. /// AP_ParamA& operator=(AP_ParamA& v) { return v; } protected: T _value[N]; }; /// Convenience macro for defining instances of the AP_ParamT template. /// #define AP_PARAMDEF(_t, _n, _pt) typedef AP_ParamT<_t, _pt> AP_##_n; AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8 AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16 AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32 #define AP_PARAMDEFV(_t, _n, _pt) typedef AP_ParamV<_t, _pt> AP_##_n; AP_PARAMDEFV(Matrix3f, Matrix3f, AP_PARAM_MATRIX3F); AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F); #define AP_PARAMDEFA(_t, _n, _size, _pt) typedef AP_ParamA<_t, _size, _pt> AP_##_n; AP_PARAMDEFA(float, Vector6f, 6, AP_PARAM_VECTOR6F); /// Rely on built in casting for other variable types /// to minimize template creation and save memory #define AP_Uint8 AP_Int8 #define AP_Uint16 AP_Int16 #define AP_Uint32 AP_Int32 #define AP_Bool AP_Int8 #endif // AP_PARAM_H