#include "AP_NavEKF3.h" #include "AP_NavEKF3_core.h" #include #include #include void NavEKF3_core::Log_Write_XKF1(uint64_t time_us) const { // Write first EKF packet Vector3f euler; Vector2f posNE; float posD; Vector3f velNED; Vector3f gyroBias; float posDownDeriv; Location originLLH; getEulerAngles(euler); getVelNED(velNED); getPosNE(posNE); getPosD(posD); getGyroBias(gyroBias); posDownDeriv = getPosDownDerivative(); if (!getOriginLLH(originLLH)) { originLLH.alt = 0; } const struct log_XKF1 pkt{ LOG_PACKET_HEADER_INIT(LOG_XKF1_MSG), time_us : time_us, core : DAL_CORE(core_index), roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) velN : (float)(velNED.x), // velocity North (m/s) velE : (float)(velNED.y), // velocity East (m/s) velD : (float)(velNED.z), // velocity Down (m/s) posD_dot : (float)(posDownDeriv), // first derivative of down position posN : (float)(posNE.x), // metres North posE : (float)(posNE.y), // metres East posD : (float)(posD), // metres Down gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } void NavEKF3_core::Log_Write_XKF2(uint64_t time_us) const { // Write second EKF packet Vector3f accelBias; Vector3f wind; Vector3f magNED; Vector3f magXYZ; getAccelBias(accelBias); getWind(wind); getMagNED(magNED); getMagXYZ(magXYZ); Vector2f dragInnov; float betaInnov = 0; getSynthAirDataInnovations(dragInnov, betaInnov); const struct log_XKF2 pkt2{ LOG_PACKET_HEADER_INIT(LOG_XKF2_MSG), time_us : time_us, core : DAL_CORE(core_index), accBiasX : (int16_t)(100*accelBias.x), accBiasY : (int16_t)(100*accelBias.y), accBiasZ : (int16_t)(100*accelBias.z), windN : (int16_t)(100*wind.x), windE : (int16_t)(100*wind.y), magN : (int16_t)(magNED.x), magE : (int16_t)(magNED.y), magD : (int16_t)(magNED.z), magX : (int16_t)(magXYZ.x), magY : (int16_t)(magXYZ.y), magZ : (int16_t)(magXYZ.z), innovDragX : dragInnov.x, innovDragY : dragInnov.y, innovSideslip : betaInnov }; AP::logger().WriteBlock(&pkt2, sizeof(pkt2)); } void NavEKF3_core::Log_Write_XKFS(uint64_t time_us) const { // Write sensor selection EKF packet const struct log_XKFS pkt { LOG_PACKET_HEADER_INIT(LOG_XKFS_MSG), time_us : time_us, core : DAL_CORE(core_index), mag_index : magSelectIndex, baro_index : selected_baro, gps_index : selected_gps, airspeed_index : getActiveAirspeed() }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } void NavEKF3_core::Log_Write_XKF3(uint64_t time_us) const { // Write third EKF packet Vector3f velInnov; Vector3f posInnov; Vector3f magInnov; float tasInnov = 0; float yawInnov = 0; getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov); const struct log_XKF3 pkt3{ LOG_PACKET_HEADER_INIT(LOG_XKF3_MSG), time_us : time_us, core : DAL_CORE(core_index), innovVN : (int16_t)(100*velInnov.x), innovVE : (int16_t)(100*velInnov.y), innovVD : (int16_t)(100*velInnov.z), innovPN : (int16_t)(100*posInnov.x), innovPE : (int16_t)(100*posInnov.y), innovPD : (int16_t)(100*posInnov.z), innovMX : (int16_t)(magInnov.x), innovMY : (int16_t)(magInnov.y), innovMZ : (int16_t)(magInnov.z), innovYaw : (int16_t)(100*degrees(yawInnov)), innovVT : (int16_t)(100*tasInnov), rerr : frontend->coreRelativeErrors[core_index], errorScore : frontend->coreErrorScores[core_index] }; AP::logger().WriteBlock(&pkt3, sizeof(pkt3)); } void NavEKF3_core::Log_Write_XKF4(uint64_t time_us) const { // Write fourth EKF packet float velVar = 0; float posVar = 0; float hgtVar = 0; Vector3f magVar; float tasVar = 0; uint16_t _faultStatus=0; Vector2f offset; uint8_t timeoutStatus=0; nav_filter_status solutionStatus {}; nav_gps_status gpsStatus {}; getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z); getFilterFaults(_faultStatus); getFilterTimeouts(timeoutStatus); getFilterStatus(solutionStatus); getFilterGpsStatus(gpsStatus); float tiltError; getTiltError(tiltError); const struct log_NKF4 pkt4{ LOG_PACKET_HEADER_INIT(LOG_XKF4_MSG), time_us : time_us, core : DAL_CORE(core_index), sqrtvarV : (int16_t)(100*velVar), sqrtvarP : (int16_t)(100*posVar), sqrtvarH : (int16_t)(100*hgtVar), sqrtvarM : (int16_t)(100*tempVar), sqrtvarVT : (int16_t)(100*tasVar), tiltErr : tiltError, offsetNorth : (int8_t)(offset.x), offsetEast : (int8_t)(offset.y), faults : _faultStatus, timeouts : timeoutStatus, solution : solutionStatus.value, gps : gpsStatus.value, primary : frontend->getPrimaryCoreIndex() }; AP::logger().WriteBlock(&pkt4, sizeof(pkt4)); } void NavEKF3_core::Log_Write_XKF5(uint64_t time_us) const { if (core_index != frontend->primary) { // log only primary instance for now return; } const struct log_NKF5 pkt5{ LOG_PACKET_HEADER_INIT(LOG_XKF5_MSG), time_us : time_us, core : DAL_CORE(core_index), normInnov : (uint8_t)(MIN(100*MAX(flowTestRatio[0],flowTestRatio[1]),255)), // normalised innovation variance ratio for optical flow observations fused by the main nav filter FIX : (int16_t)(1000*innovOptFlow[0]), // optical flow LOS rate vector innovations from the main nav filter FIY : (int16_t)(1000*innovOptFlow[1]), // optical flow LOS rate vector innovations from the main nav filter AFI : (int16_t)(1000*norm(auxFlowObsInnov.x,auxFlowObsInnov.y)), // optical flow LOS rate innovation from terrain offset estimator HAGL : (int16_t)(100*(terrainState - stateStruct.position.z)), // height above ground level offset : (int16_t)(100*terrainState), // filter ground offset state error RI : (int16_t)(100*innovRng), // range finder innovations meaRng : (uint16_t)(100*rangeDataDelayed.rng), // measured range errHAGL : (uint16_t)(100*sqrtf(Popt)), // note Popt is constrained to be non-negative in EstimateTerrainOffset() angErr : (float)outputTrackError.x, // output predictor angle error velErr : (float)outputTrackError.y, // output predictor velocity error posErr : (float)outputTrackError.z // output predictor position tracking error }; AP::logger().WriteBlock(&pkt5, sizeof(pkt5)); } void NavEKF3_core::Log_Write_Quaternion(uint64_t time_us) const { // log quaternion Quaternion quat; getQuaternion( quat); const struct log_XKQ pktq1{ LOG_PACKET_HEADER_INIT(LOG_XKQ_MSG), time_us : time_us, core : DAL_CORE(core_index), q1 : quat.q1, q2 : quat.q2, q3 : quat.q3, q4 : quat.q4 }; AP::logger().WriteBlock(&pktq1, sizeof(pktq1)); } // logs beacon information, one beacon per call void NavEKF3_core::Log_Write_Beacon(uint64_t time_us) { if (core_index != frontend->primary) { // log only primary instance for now return; } if (!statesInitialised || N_beacons == 0 || rngBcnFusionReport == nullptr) { return; } // Ensure that beacons are not skipped due to calling this function at a rate lower than the updates if (rngBcnFuseDataReportIndex >= N_beacons) { rngBcnFuseDataReportIndex = 0; } const rngBcnFusionReport_t &report = rngBcnFusionReport[rngBcnFuseDataReportIndex]; // write range beacon fusion debug packet if the range value is non-zero if (report.rng <= 0.0f) { rngBcnFuseDataReportIndex++; return; } const struct log_XKF0 pkt10{ LOG_PACKET_HEADER_INIT(LOG_XKF0_MSG), time_us : time_us, core : DAL_CORE(core_index), ID : rngBcnFuseDataReportIndex, rng : (int16_t)(100*report.rng), innov : (int16_t)(100*report.innov), sqrtInnovVar : (uint16_t)(100*sqrtf(report.innovVar)), testRatio : (uint16_t)(100*constrain_float(report.testRatio,0.0f,650.0f)), beaconPosN : (int16_t)(100*report.beaconPosNED.x), beaconPosE : (int16_t)(100*report.beaconPosNED.y), beaconPosD : (int16_t)(100*report.beaconPosNED.z), offsetHigh : (int16_t)(100*bcnPosDownOffsetMax), offsetLow : (int16_t)(100*bcnPosDownOffsetMin), posN : (int16_t)(100*receiverPos.x), posE : (int16_t)(100*receiverPos.y), posD : (int16_t)(100*receiverPos.z) }; AP::logger().WriteBlock(&pkt10, sizeof(pkt10)); rngBcnFuseDataReportIndex++; } void NavEKF3_core::Log_Write_BodyOdom(uint64_t time_us) { if (core_index != frontend->primary) { // log only primary instance for now return; } Vector3f velBodyInnov,velBodyInnovVar; static uint32_t lastUpdateTime_ms = 0; uint32_t updateTime_ms = getBodyFrameOdomDebug( velBodyInnov, velBodyInnovVar); if (updateTime_ms > lastUpdateTime_ms) { const struct log_XKFD pkt11{ LOG_PACKET_HEADER_INIT(LOG_XKFD_MSG), time_us : time_us, core : DAL_CORE(core_index), velInnovX : velBodyInnov.x, velInnovY : velBodyInnov.y, velInnovZ : velBodyInnov.z, velInnovVarX : velBodyInnovVar.x, velInnovVarY : velBodyInnovVar.y, velInnovVarZ : velBodyInnovVar.z }; AP::logger().WriteBlock(&pkt11, sizeof(pkt11)); lastUpdateTime_ms = updateTime_ms; } } void NavEKF3_core::Log_Write_State_Variances(uint64_t time_us) const { if (core_index != frontend->primary) { // log only primary instance for now return; } static uint32_t lastEkfStateVarLogTime_ms = 0; if (AP::dal().millis() - lastEkfStateVarLogTime_ms > 490) { lastEkfStateVarLogTime_ms = AP::dal().millis(); const struct log_XKV pktv1{ LOG_PACKET_HEADER_INIT(LOG_XKV1_MSG), time_us : time_us, core : DAL_CORE(core_index), v00 : P[0][0], v01 : P[1][1], v02 : P[2][2], v03 : P[3][3], v04 : P[4][4], v05 : P[5][5], v06 : P[6][6], v07 : P[7][7], v08 : P[8][8], v09 : P[9][9], v10 : P[10][10], v11 : P[11][11] }; AP::logger().WriteBlock(&pktv1, sizeof(pktv1)); const struct log_XKV pktv2{ LOG_PACKET_HEADER_INIT(LOG_XKV2_MSG), time_us : time_us, core : DAL_CORE(core_index), v00 : P[12][12], v01 : P[13][13], v02 : P[14][14], v03 : P[15][15], v04 : P[16][16], v05 : P[17][17], v06 : P[18][18], v07 : P[19][19], v08 : P[20][20], v09 : P[21][21], v10 : P[22][22], v11 : P[23][23] }; AP::logger().WriteBlock(&pktv2, sizeof(pktv2)); } } void NavEKF3::Log_Write() { // only log if enabled if (activeCores() <= 0) { return; } if (lastLogWrite_us == imuSampleTime_us) { // vehicle is doubling up on logging return; } lastLogWrite_us = imuSampleTime_us; uint64_t time_us = AP::dal().micros64(); for (uint8_t i=0; igetLogData(yaw_composite, yaw_composite_variance, yaw, ivn, ive, wgt)) { return; } const struct log_XKY0 xky0{ LOG_PACKET_HEADER_INIT(LOG_XKY0_MSG), time_us : time_us, core : DAL_CORE(core_index), yaw_composite : yaw_composite, yaw_composite_variance : sqrtf(MAX(yaw_composite_variance, 0.0f)), yaw0 : yaw[0], yaw1 : yaw[1], yaw2 : yaw[2], yaw3 : yaw[3], yaw4 : yaw[4], wgt0 : wgt[0], wgt1 : wgt[1], wgt2 : wgt[2], wgt3 : wgt[3], wgt4 : wgt[4], }; AP::logger().WriteBlock(&xky0, sizeof(xky0)); const struct log_XKY1 xky1{ LOG_PACKET_HEADER_INIT(LOG_XKY1_MSG), time_us : time_us, core : DAL_CORE(core_index), ivn0 : ivn[0], ivn1 : ivn[1], ivn2 : ivn[2], ivn3 : ivn[3], ivn4 : ivn[4], ive0 : ive[0], ive1 : ive[1], ive2 : ive[2], ive3 : ive[3], ive4 : ive[4], }; AP::logger().WriteBlock(&xky1, sizeof(xky1)); }